How to cite this paper
Mohammadi, B & Salimi-Majd, D. (2014). Investigation of delamination and damage due to free edge effects in composite laminates using cohesive interface elements.Engineering Solid Mechanics, 2(2), 101-118.
Refrences
Balzani, C., & Wagner, W. (2008). An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Engineering Fracture Mechanics, 75(9), 2597-2615.
Bao, G., & Suo, Z. (1992). Remarks on crack-bridging concepts. Applied Mechanics Review, 45, 355–366.
Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in applied mechanics, 7(1), 55-129.
Ba?ant, Z. P., & Ba?ant, Z. P. (1998). Fracture and size effect: in concrete and other quasibrittle materials (Vol. 16). CRC press.
Benzeggagh, M. L., & Kenane, M. (1996). Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56(4), 439-449.
Camanho, P. P., Davila, C. G., & De Moura, M. F. (2003). Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of composite materials, 37(16), 1415-1438.
Corigliano, A. (1993). Formulation, identification and use of interface models in the numerical analysis of composite delamination. International Journal of Solids and Structures, 30(20), 2779-2811.
Cox, B. N., & Marshall, D. B. (1994). Concepts for bridged cracks in fracture and fatigue. Acta Metallurgica et Materialia, 42(2), 341-363.
Daudeville, L., Allix, O., & Ladeveze, P. (1995). Delamination analysis by damage mechanics: some applications. Composites Engineering, 5(1), 17-24.
Davila, C. G., Camanho, P. P., & Rose, C. A. (2005). Failure criteria for FRP laminates. Journal of Composite materials, 39(4), 323-345.
Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100-104.
Hashin, Z., (1981). Failure criteria for unidirectional ?ber composites, Journal of Applied Mechanics, 20, 329–334.
Hassan, N. M., & Batra, R. C. (2008). Modeling damage in polymeric composites. Composites Part B: Engineering, 39(1), 66-82.
Hessabi, Z. R., Majidi, B., & Aghazadeh, J. (2005). Effects of stacking sequence on fracture mechanisms in quasi-isotropic carbon/epoxy laminates under tensile loading. Iranian Polymer Journal, 14(6), 531-538.
Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and concrete research, 6(6), 773-781.
Hosseini-Toudeshky, H., Hosseini, S., & Mohammadi, B. (2010). Buckling and delamination growth analysis of composite laminates containing embedded delaminations. Applied Composite Materials, 17(2), 95-109.
Hui, C. Y., Jagota, A., Bennison, S. J., & Londono, J. D. (2003). Crack blunting and the strength of soft elastic solids. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2034), 1489-1516.
Irwin, G.R., (1960). Plastic zone near a crack and fracture toughness, Proceedings of the Seventh Sagamore Ordnance Materials Conference, Volume IV, Syracuse University, New York, 63–78.
Lingen, F. J., & Schipperen, J. H. A. (2000). An efficient parallel procedure for the simulation of free edge delamination in composite materials. Computers & Structures, 76(5), 637-649.
Mi, Y., Crisfield, M. A., Davies, G. A. O., & Hellweg, H. B. (1998). Progressive delamination using interface elements. Journal of composite materials, 32(14), 1246-1272.
Pagano, N. J., & Pipes, R. B. (1973). Some observations on the interlaminar strength of composite laminates. International Journal of Mechanical Sciences, 15(8), 679-688.
Tahani, M., & NOSIER, A. (2004). Accurate determination of interlaminar stresses in general cross-ply laminates. Mechanics of Advanced Materials and Structures, 11(1), 67-92.
Mohammadi, B., Hosseini-Toudeshky, H. & Sadr-Lahidjani, M.H. (2008). Progressive damage analyses of angle-ply laminates exhibiting free edge effects using continuum damage mechanics with layer?wise finite element method. Fatigue & Fracture of Engineering Materials & Structures, 31(7), 549-568.
Naghipour, P., Bartsch, M., Chernova, L., Hausmann, J., & Voggenreiter, H. (2010). Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical and experimental investigations. Materials Science and Engineering: A, 527(3), 509-517.
Rice, J. R. (1980). The mechanics of earthquake rupture, Physics of the Earth & apos; s Interior AM Dziewonski, E. Boschi, 555–649.
Turon, A., Davila, C. G., Camanho, P. P., & Costa, J. (2007a). An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engineering Fracture Mechanics, 74(10), 1665-1682.
Turon, A., Costa, J., Camanho, P. P., & D?vila, C. G. (2007b). Simulation of delamination in composites under high-cycle fatigue. Composites Part A: applied science and manufacturing, 38(11), 2270-2282.
Turon, A., Costa, J., Camanho, P. P., & Maim?, P. (2008). Analytical and numerical investigation of the length of the cohesive zone in delaminated composite materials. In Mechanical response of composites (pp. 77-97). Springer Netherlands.
Weeks, C. A., & Sun, C. T. (1998). Modeling non-linear rate-dependent behavior in fiber-reinforced composites. Composites Science and Technology, 58(3), 603-611.
Xu, X. P., & Needleman, A. (1994). Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids, 42(9), 1397-1434.
Ye, L. (1988). Role of matrix resin in delamination onset and growth in composite laminates. Composites science and technology, 33(4), 257-277.
Bao, G., & Suo, Z. (1992). Remarks on crack-bridging concepts. Applied Mechanics Review, 45, 355–366.
Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in applied mechanics, 7(1), 55-129.
Ba?ant, Z. P., & Ba?ant, Z. P. (1998). Fracture and size effect: in concrete and other quasibrittle materials (Vol. 16). CRC press.
Benzeggagh, M. L., & Kenane, M. (1996). Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56(4), 439-449.
Camanho, P. P., Davila, C. G., & De Moura, M. F. (2003). Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of composite materials, 37(16), 1415-1438.
Corigliano, A. (1993). Formulation, identification and use of interface models in the numerical analysis of composite delamination. International Journal of Solids and Structures, 30(20), 2779-2811.
Cox, B. N., & Marshall, D. B. (1994). Concepts for bridged cracks in fracture and fatigue. Acta Metallurgica et Materialia, 42(2), 341-363.
Daudeville, L., Allix, O., & Ladeveze, P. (1995). Delamination analysis by damage mechanics: some applications. Composites Engineering, 5(1), 17-24.
Davila, C. G., Camanho, P. P., & Rose, C. A. (2005). Failure criteria for FRP laminates. Journal of Composite materials, 39(4), 323-345.
Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100-104.
Hashin, Z., (1981). Failure criteria for unidirectional ?ber composites, Journal of Applied Mechanics, 20, 329–334.
Hassan, N. M., & Batra, R. C. (2008). Modeling damage in polymeric composites. Composites Part B: Engineering, 39(1), 66-82.
Hessabi, Z. R., Majidi, B., & Aghazadeh, J. (2005). Effects of stacking sequence on fracture mechanisms in quasi-isotropic carbon/epoxy laminates under tensile loading. Iranian Polymer Journal, 14(6), 531-538.
Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and concrete research, 6(6), 773-781.
Hosseini-Toudeshky, H., Hosseini, S., & Mohammadi, B. (2010). Buckling and delamination growth analysis of composite laminates containing embedded delaminations. Applied Composite Materials, 17(2), 95-109.
Hui, C. Y., Jagota, A., Bennison, S. J., & Londono, J. D. (2003). Crack blunting and the strength of soft elastic solids. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2034), 1489-1516.
Irwin, G.R., (1960). Plastic zone near a crack and fracture toughness, Proceedings of the Seventh Sagamore Ordnance Materials Conference, Volume IV, Syracuse University, New York, 63–78.
Lingen, F. J., & Schipperen, J. H. A. (2000). An efficient parallel procedure for the simulation of free edge delamination in composite materials. Computers & Structures, 76(5), 637-649.
Mi, Y., Crisfield, M. A., Davies, G. A. O., & Hellweg, H. B. (1998). Progressive delamination using interface elements. Journal of composite materials, 32(14), 1246-1272.
Pagano, N. J., & Pipes, R. B. (1973). Some observations on the interlaminar strength of composite laminates. International Journal of Mechanical Sciences, 15(8), 679-688.
Tahani, M., & NOSIER, A. (2004). Accurate determination of interlaminar stresses in general cross-ply laminates. Mechanics of Advanced Materials and Structures, 11(1), 67-92.
Mohammadi, B., Hosseini-Toudeshky, H. & Sadr-Lahidjani, M.H. (2008). Progressive damage analyses of angle-ply laminates exhibiting free edge effects using continuum damage mechanics with layer?wise finite element method. Fatigue & Fracture of Engineering Materials & Structures, 31(7), 549-568.
Naghipour, P., Bartsch, M., Chernova, L., Hausmann, J., & Voggenreiter, H. (2010). Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical and experimental investigations. Materials Science and Engineering: A, 527(3), 509-517.
Rice, J. R. (1980). The mechanics of earthquake rupture, Physics of the Earth & apos; s Interior AM Dziewonski, E. Boschi, 555–649.
Turon, A., Davila, C. G., Camanho, P. P., & Costa, J. (2007a). An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engineering Fracture Mechanics, 74(10), 1665-1682.
Turon, A., Costa, J., Camanho, P. P., & D?vila, C. G. (2007b). Simulation of delamination in composites under high-cycle fatigue. Composites Part A: applied science and manufacturing, 38(11), 2270-2282.
Turon, A., Costa, J., Camanho, P. P., & Maim?, P. (2008). Analytical and numerical investigation of the length of the cohesive zone in delaminated composite materials. In Mechanical response of composites (pp. 77-97). Springer Netherlands.
Weeks, C. A., & Sun, C. T. (1998). Modeling non-linear rate-dependent behavior in fiber-reinforced composites. Composites Science and Technology, 58(3), 603-611.
Xu, X. P., & Needleman, A. (1994). Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids, 42(9), 1397-1434.
Ye, L. (1988). Role of matrix resin in delamination onset and growth in composite laminates. Composites science and technology, 33(4), 257-277.