Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Engineering Solid Mechanics » Free vibration of simply supported rectangular plates on Pasternak foundation: An exact and three-dimensional solution

Journals

  • IJIEC (726)
  • MSL (2637)
  • DSL (649)
  • CCL (495)
  • USCM (1092)
  • ESM (404)
  • AC (557)
  • JPM (247)
  • IJDS (912)
  • JFS (91)
  • HE (21)

ESM Volumes

    • Volume 1 (16)
      • Issue 1 (4)
      • Issue 2 (4)
      • Issue 3 (4)
      • Issue 4 (4)
    • Volume 2 (32)
      • Issue 1 (6)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 3 (27)
      • Issue 1 (7)
      • Issue 2 (7)
      • Issue 3 (6)
      • Issue 4 (7)
    • Volume 4 (25)
      • Issue 1 (5)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)
    • Volume 5 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 6 (32)
      • Issue 1 (8)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (8)
    • Volume 7 (28)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (7)
      • Issue 4 (8)
    • Volume 8 (36)
      • Issue 1 (8)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 9 (36)
      • Issue 1 (9)
      • Issue 2 (9)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 10 (35)
      • Issue 1 (9)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 11 (39)
      • Issue 1 (10)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 12 (41)
      • Issue 1 (10)
      • Issue 2 (9)
      • Issue 3 (12)
      • Issue 4 (10)
    • Volume 13 (32)
      • Issue 1 (12)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)

Keywords

Jordan(161)
Supply chain management(160)
Vietnam(148)
Customer satisfaction(120)
Performance(113)
Supply chain(108)
Service quality(98)
Tehran Stock Exchange(94)
Competitive advantage(93)
SMEs(86)
optimization(84)
Financial performance(83)
Trust(81)
Job satisfaction(79)
Social media(78)
Factor analysis(78)
TOPSIS(78)
Knowledge Management(77)
Genetic Algorithm(76)
Sustainability(76)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(59)
Endri Endri(45)
Muhammad Alshurideh(42)
Hotlan Siagian(39)
Jumadil Saputra(36)
Muhammad Turki Alshurideh(35)
Dmaithan Almajali(35)
Barween Al Kurdi(32)
Basrowi Basrowi(31)
Hassan Ghodrati(31)
Ahmad Makui(31)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Sulieman Ibraheem Shelash Al-Hawary(28)
Prasadja Ricardianto(28)
Sautma Ronni Basana(27)
Haitham M. Alzoubi(27)


» Show all authors

Countries

Iran(2162)
Indonesia(1276)
Jordan(783)
India(779)
Vietnam(500)
Saudi Arabia(438)
Malaysia(438)
United Arab Emirates(220)
China(181)
Thailand(151)
United States(109)
Turkey(102)
Ukraine(99)
Egypt(95)
Canada(89)
Pakistan(84)
Peru(83)
United Kingdom(77)
Nigeria(77)
Morocco(73)


» Show all countries

Engineering Solid Mechanics

ISSN 2291-8752 (Online) - ISSN 2291-8744 (Print)
Quarterly Publication
Volume 2 Issue 1 pp. 29-42 , 2014

Free vibration of simply supported rectangular plates on Pasternak foundation: An exact and three-dimensional solution Pages 29-42 Right click to download the paper Download PDF

Authors: M. Dehghany, A. Farajpour

Keywords: Eigen-frequency, Elastic foundation, Free vibration, Pasternak model, Simply supported rectangular plates, Three-dimensional elasticity theory

Abstract: This paper deals with exact solution for free vibration analysis of simply supported rectangular plates on elastic foundation. The solution is on the basis of three dimensional elasticity theory. The foundation is described by the Pasternak (two-parameter) model. First, the Navier equations of motion are replaced by three decoupled equations in terms of displacement components. Then, these equations are solved in a semi-inverse method. The obtained displacement field satisfies all the boundary conditions of the problem in a point wise manner. The solution is in the form of a double Fourier sine series. Then free-vibration characteristics of rectangular plates resting on elastic foundations for different thickness/span ratios and foundation parameters are studied. The numerical results are compared with the available results in the literature. Important parameters on the accuracy of plate theories and free-vibration characteristics of rectangular plates resting on elastic foundations are discussed.

How to cite this paper
Dehghany, M & Farajpour, A. (2014). Free vibration of simply supported rectangular plates on Pasternak foundation: An exact and three-dimensional solution.Engineering Solid Mechanics, 2(1), 29-42.

Refrences
Akhavan, H., Hashemi, S. H., Taher, H., Alibeigloo, A., & Vahabi, S. (2009). Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis. Computational Materials Science, 44(3), 951-961.

Hanna, N. F., & Leissa, A. W. (1994). A higher order shear deformation theory for the vibration of thick plates. Journal of Sound and Vibration, 170(4), 545-555.

Hasani Baferani, A., Saidi, A. R., & Ehteshami, H. (2011). Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Composite Structures, 93(7), 1842-1853.

Hasheminejad, S. M., & Gheshlaghi, B. (2012). Three-dimensional elastodynamic solution for an arbitrary thick FGM rectangular plate resting on a two parameter viscoelastic foundation. Composite Structures, 94(9), 2746-2755.

Hosseini Hashemi, S., Karimi, M., & Rokni Damavandi Taher, H. (2010). Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method. Ocean Engineering, 37(2), 174-185.

Lam, K. Y., Wang, C. M., & He, X. Q. (2000). Canonical exact solutions for Levy-plates on two-parameter foundation using Green & apos; s functions. Engineering Structures, 22(4), 364-378.

Levinson, M. (1985). Free vibrations of a simply supported, rectangular plate: an exact elasticity solution. Journal of Sound and Vibration, 98(2), 289-298.

Lim, C. W., Liew, K. M. & Kitipornchai, S. (1998 a). Numerical aspects for free vibration of thick plates Part I: formulation and verification. Computer Methods in Applied Mechanics and Engineering, 156(1), 15-29.

Lim, C. W., Kitipornchai, S., & Liew, K. M. (1998 b). Numerical aspects for free vibration of thick plates Part II: Numerical efficiency and vibration frequencies. Computer Methods in Applied Mechanics and Engineering, 156(1), 31-44.

Malekzadeh, P. (2009). Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations. Composite Structures, 89(3), 367-373.

Matsunaga, H. (2000). Vibration and stability of thick plates on elastic foundations. Journal of Engineering Mechanics, 126(1), 27-34.

Mindlin, R. D. (1951). Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. of Appl. Mech., 18, 31-38.

Mindlin, R. D., & Deresiewicz, H. (1954). Thickness?Shear and Flexural Vibrations of a Circular Disk. Journal of Applied Physics, 25(10), 1329-1332.

Mindlin, R. D., Schaknow, A. & Deresiewicz, H. (1956). Flexural Vibration of Rectangular Plates. Journal of Applied Mechanics, 23, 430-436.

Omurtag, M. H., ?zütok, A., Ak?z, A. Y., & OeZCEL?KOeRS, Y. U. N. U. S. (1997). Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gateaux differential. International Journal for Numerical Methods in Engineering, 40(2), 295-317.

Pasternak, P. L. (1954). On a new method of analysis of an elastic foundation by means of two foundation constants. Gosudarstvennoe Izdatel’stvo Litearturi po Stroitel’stvu i Arkhitekture, Moscow, USSR (in Russian).

Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates. Journal of applied mechanics, 51(4), 745-752.

Reissner, E. (1945). The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics, 12(2), 69-77.

Saidi, A. R., Atashipour, S. R., & Jomehzadeh, E. (2009). Reformulation of Navier equations for solving three-dimensional elasticity problems with applications to thick plate analysis. Acta Mechanica, 208(3-4), 227-235.

Sobhy, M. (2013). Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Composite Structures.99, 76-87.

Srinivas, S., Joga Rao, C. V., & Rao, A. K. (1970). An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. Journal of Sound and Vibration, 12(2), 187-199.

Tajeddini, V., Ohadi, A., & Sadighi, M. (2011). Three-dimensional free vibration of variable thickness thick circular and annular isotropic and functionally graded plates on Pasternak foundation. International Journal of Mechanical Sciences, 53(4), 300-308.

Timoshenko, S. P., & Goodier, J. N. (1951). Theory of elasticity. McGraw-Hill, New York

Timoshenko, S., & Woinowsky-Krieger, S. (1970). Theory of plates and shells . New York: McGraw-Hill.

Wen, P. H. (2008). The fundamental solution of Mindlin plates resting on an elastic foundation in the Laplace domain and its applications. International Journal of Solids and Structures, 45(3), 1032-1050.

Winkler, E. (1867). Die Lehre von der Elasticitaet und Festigkeit. Prag, Dominicus.

Xiang, Y., Wang, C. M., & Kitipornchai, S. (1994). Exact vibration solution for initially stressed Mindlin plates on Pasternak foundations. International Journal of Mechanical Sciences, 36(4), 311-316.

Zhong, Y., & Yin, J. H. (2008). Free vibration analysis of a plate on foundation with completely free boundary by finite integral transform method. Mechanics Research Communications, 35(4), 268-275.

Zhou, D., Cheung, Y. K., Lo, S. H., & Au, F. T. K. (2004). Three?dimensional vibration analysis of rectangular thick plates on Pasternak foundation. International Journal for Numerical Methods in Engineering, 59(10), 1313-1334.
  • 68
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Engineering Solid Mechanics | Year: 2014 | Volume: 2 | Issue: 1 | Views: 4443 | Reviews: 0

Related Articles:
  • Mixed mode I/II stress intensity factors through the thickness of disc type ...
  • Crack growth path prediction for the angled cracked plate using higher orde ...
  • Free vibration analysis of a non-uniform cantilever Timoshenko beam with mu ...
  • Impact damage simulation in elastic and viscoelastic media
  • The Karush–Kuhn–Tucker optimality conditions in minimum weight design of el ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com