Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Engineering Solid Mechanics » Prediction the Charpy impact energy of functionally graded steels

Journals

  • IJIEC (726)
  • MSL (2637)
  • DSL (649)
  • CCL (495)
  • USCM (1092)
  • ESM (404)
  • AC (557)
  • JPM (247)
  • IJDS (912)
  • JFS (91)
  • HE (21)
  • SCI (11)

ESM Volumes

    • Volume 1 (16)
      • Issue 1 (4)
      • Issue 2 (4)
      • Issue 3 (4)
      • Issue 4 (4)
    • Volume 2 (32)
      • Issue 1 (6)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 3 (27)
      • Issue 1 (7)
      • Issue 2 (7)
      • Issue 3 (6)
      • Issue 4 (7)
    • Volume 4 (25)
      • Issue 1 (5)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)
    • Volume 5 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 6 (32)
      • Issue 1 (8)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (8)
    • Volume 7 (28)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (7)
      • Issue 4 (8)
    • Volume 8 (36)
      • Issue 1 (8)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 9 (36)
      • Issue 1 (9)
      • Issue 2 (9)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 10 (35)
      • Issue 1 (9)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 11 (39)
      • Issue 1 (10)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 12 (41)
      • Issue 1 (10)
      • Issue 2 (9)
      • Issue 3 (12)
      • Issue 4 (10)
    • Volume 13 (32)
      • Issue 1 (12)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)

Keywords

Supply chain management(163)
Jordan(161)
Vietnam(148)
Customer satisfaction(120)
Performance(113)
Supply chain(108)
Service quality(98)
Tehran Stock Exchange(94)
Competitive advantage(93)
SMEs(86)
optimization(84)
Financial performance(83)
Trust(81)
TOPSIS(80)
Job satisfaction(79)
Sustainability(79)
Factor analysis(78)
Social media(78)
Knowledge Management(77)
Genetic Algorithm(76)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(59)
Endri Endri(45)
Muhammad Alshurideh(42)
Hotlan Siagian(39)
Jumadil Saputra(36)
Muhammad Turki Alshurideh(35)
Dmaithan Almajali(35)
Barween Al Kurdi(32)
Ahmad Makui(32)
Basrowi Basrowi(31)
Hassan Ghodrati(31)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Sulieman Ibraheem Shelash Al-Hawary(28)
Prasadja Ricardianto(28)
Sautma Ronni Basana(27)
Haitham M. Alzoubi(27)


» Show all authors

Countries

Iran(2168)
Indonesia(1276)
Jordan(783)
India(780)
Vietnam(500)
Saudi Arabia(438)
Malaysia(438)
United Arab Emirates(220)
China(181)
Thailand(151)
United States(109)
Turkey(102)
Ukraine(99)
Egypt(95)
Canada(91)
Pakistan(84)
Peru(83)
United Kingdom(78)
Nigeria(77)
Morocco(73)


» Show all countries

Engineering Solid Mechanics

ISSN 2291-8752 (Online) - ISSN 2291-8744 (Print)
Quarterly Publication
Volume 2 Issue 1 pp. 21-28 , 2014

Prediction the Charpy impact energy of functionally graded steels Pages 21-28 Right click to download the paper Download PDF

Authors: H. Salavati, F. Berto

Keywords: Analytical model, Charpy impact energy, Distance from the notch apex to the median phase, Functionally Graded Steels

Abstract: Functionally Graded Steels (FGSs) are possible solutions to improve the properties of steels made by Martensite and Bainite brittle phases. These phases are usually present in the interface between the carbon ferritic steel and the stainless austenitic steel. FGSs materials are widely investigated in the recent literature but only few works have been devoted to investigate the impact energy in the case of crack arresters. To partially fill this gap, the effect of the distance between the notch tip and the position of the median phase on the Charpy impact energy is investigated in the present paper. The results show that when the notch apex is close to the median layer the impact energy reaches its maximum value due to the increment of the absorbed energy by plastic deformation ahead of the notch tip. On the other hand, when the notch apex is far from the median layer, the impact energy strongly decreases. Keeping into account the relationship between the Charpy impact energy and the plastic volume size, a new theoretical model has been developed to link the composite impact energy with the distance from the notch apex to the median phase. The results of the new model show a sound agreement with previous results taken from the literature.

How to cite this paper
Salavati, H & Berto, F. (2014). Prediction the Charpy impact energy of functionally graded steels.Engineering Solid Mechanics, 2(1), 21-28.

Refrences
Aghazadeh Mohandesi,J., & Shahosseinie, M. H. (2005). Transformation characteristics of functionally graded steels produced by electroslag remelting. Metallurgical and Materials Transactions A, 36(12), 3471-3476.

Aghazadeh Mohandesi, J, Nazari, A., Vishkasogheh, M. H., & Abedi, M. (2010). Modeling fracture toughness of functionally graded steels in crack divider configuration. Modelling and Simulation in Materials Science and Engineering, 18(7), 075007, 1-13.

Aliha, M. R. M., Ayatollahi, M. R., & Pakzad, R. (2008). Brittle fracture analysis using a ring-shape specimen containing two angled cracks. International Journal of Fracture, 153(1), 63-68.

Aliha, M. R. M., & Ayatollahi, M. R. (2009). Brittle fracture evaluation of a fine grain cement mortar in combined tensile?shear deformation. Fatigue & Fracture of Engineering Materials & Structures, 32(12), 987-994.

Ayatollahi, M. R., Aliha, M. R. M., & Hassani, M. M. (2006). Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Materials Science and Engineering: A, 417(1), 348-356.

Ayatollahi, M. R., & Aliha, M. R. M. (2011). Fracture analysis of some ceramics under mixed mode loading. Journal of the American Ceramic Society, 94(2), 561-569.

G?mez, F. J., Elices, M., & Valiente, A. (2000). Cracking in PMMA containing U?shaped notches. Fatigue & Fracture of Engineering Materials & Structures, 23(9), 795-803.

G?mez, F. J., & Elices, M. (2003a). Fracture of components with V-shaped notches. Engineering fracture mechanics, 70(14), 1913-1927.

G?mez, F. J., & Elices, M. (2003b). A fracture criterion for sharp V-notched samples. International Journal of Fracture, 123(3-4), 163-175.

G?mez, F. J., & Elices, M. (2004). A fracture criterion for blunted V-notched samples. International Journal of Fracture, 127(3), 239-264.

G?mez, F. J., Elices, M., & Planas, J. (2005). The cohesive crack concept: application to PMMA at? 60° C. Engineering fracture mechanics, 72(8), 1268-1285.

G?mez, F. J., & Elices, M. (2006). Fracture loads for ceramic samples with rounded notches. Engineering fracture mechanics, 73(7), 880-894.

Jang, Y. C., Hong, J. K., Park, J. H., Kim, D. W., & Lee, Y. (2008). Effects of notch position of the Charpy impact specimen on the failure behavior in heat affected zone. Journal of materials processing technology, 201(1), 419-424.

Mirlohi, S., & Aliha, MRM. (2013). Crack growth path prediction for the angled cracked plate using higher order terms of Williams series expansion. Engineering Solid Mechanics, 1(3), 77-84.

Nazari, A., & Aghazadeh Mohandesi, J. (2009). Impact energy of functionally graded steels with crack divider configuration. Journal of materials science & technology, 25(6), 847-852.

Nazari, A. (2012). Application of strain gradient plasticity theory to model Charpy impact energy of functionally graded steels using modified stress–strain curve data. Computational Materials Science, 51(1), 281-289.

Nazari, A., & Aghazadeh Mohandesi, J. A. (2010). Impact energy of functionally graded steels in crack arrester configuration. Journal of materials engineering and performance, 19(7), 1058-1064.

Torabi, AR., & Aliha, MRM. (2013). Determination of permissible defect size for solid axles loaded under fully-reversed rotating bending. Engineering Solid Mechanics, 1(1), 27-36.

Torabi, AR. (2013a). Wide range brittle fracture curves for U-notched components based on UMTS model. Engineering Solid Mechanics, 1(2), 57-68.

Torabi, AR. (2013b). Failure curves for predicting brittle fracture in V-notched structural components loaded under mixed tension/shear: An advanced engineering design package. Engineering Solid Mechanics, 1(3), 99-118.

Torabi, AR. (2013c). The Equivalent Material Concept: Application to failure of O-notches. Engineering Solid Mechanics, 1(4), 129-140.
  • 0
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Engineering Solid Mechanics | Year: 2014 | Volume: 2 | Issue: 1 | Views: 2432 | Reviews: 0

Related Articles:
  • Calculation of stress intensity factors for an interfacial notch of a bi-ma ...
  • The Equivalent Material Concept: Application to failure of O-notches
  • Failure curves for predicting brittle fracture in V-notched structural comp ...
  • Crack growth path prediction for the angled cracked plate using higher orde ...
  • Wide range brittle fracture curves for U-notched components based on UMTS m ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com