How to cite this paper
Shafigh, M., Fatouraee, N & Seddighi, A. (2013). Determining the biomechanical properties of human intracranial blood vessels through biaxial tensile test and fitting them to a hyperelastic model.Engineering Solid Mechanics, 1(2), 43-56.
Refrences
Lally, C., Reid, A. J., & Prendergast, P. J. (2004). Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Annals of Biomedical Engineering, 32(10), 1355-1364.
Aronow, W. S., Schwartz, K. S., & Koenigsberg, M. (1987). Correlation of serum lipids, calcium, and phosphorus, diabetes mellitus and history of systemic hypertension with presence or absence of calcified or thickened aortic cusps or root in elderly patients. The American Journal of Cardiology, 59(9), 998-999.
Busby, D. E., & Burton, A. C. (1965). The effect of age on the elasticity of the major brain arteries. Canadian Journal of Physiology and Pharmacology, 43(2), 185-202.
Coulson, R. J., Cipolla, M. J., Vitullo, L., & Chesler, N. C. (2004). Mechanical properties of rat middle cerebral arteries with and without myogenic tone. Journal of Biomechanical Engineering, 126(1), 76-81.
Cox, R. H. (1984). Viscoelastic properties of canine pulmonary arteries. American Journal of Physiology-Heart and Circulatory Physiology, 246(1), H90-H96.
Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003). Experimentally tractable, pseudo-elastic constitutive law for biomembranes: I. Theory. Journal of Biomechanical Engineering, 125(1), 94-99.
Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003). Experimentally tractable, pseudo-elastic constitutive law for biomembranes: II. Application. Journal of Biomechanical Engineering, 125(1), 100-105.
Dixon, S. A., Heikes, R. G., & Vito, R. P. (2003). Constitutive modeling of porcine coronary arteries using designed experiments. Journal of Biomechanical Engineering, 125(2), 274-279.
Dumoulin, C., & Cochelin, B. (2000). Mechanical behaviour modelling of balloon-expandable stents. Journal of Biomechanics, 33(11), 1461-1470.
Burleson, A. C., Strother, C. M., & Turitto, V. T. (1995). Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery, 37(4), 774-784.
Gasser, T. C., & Holzapfel, G. A. (2007). Modeling plaque fissuring and dissection during balloon angioplasty intervention. Annals of Biomedical Engineering, 35(5), 711-723.
Gourisankaran, V., & Sharma, M. G. (2000). The finite element analysis of stresses in atherosclerotic arteries during balloon angioplasty. Critical Reviews™ in Biomedical Engineering, 28(1 & 2).
Guccione, J. M., McCulloch, A. D., & Waldman, L. K. (1991). Passive material properties of intact ventricular myocardium determined from a cylindrical model. Journal of Biomechanical Engineering, 113(1), 42-55.
Humphrey, J. D. (2004). A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries.
Holzapfel, G. A. (2005). Similarities between soft biological tissues and rubberlike materials. In CONSTITUTIVE MODELS FOR RUBBER-PROCEEDINGS- (Vol. 4, p. 607). Balkema.
Holzapfel, G. A., Eberlein, R., Wriggers, P., & Weizs?cker, H. W. (1996). Large strain analysis of soft biological membranes: Formulation and finite element analysis. Computer Methods in Applied Mechanics and Engineering, 132(1), 45-61.
Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity and the Physical Science of Solids, 61(1-3), 1-48.
Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2004). Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. Journal of Biomechanical Engineering, 126(2), 264-275.
Holzapfel, G. A., & Weizs?cker, H. W. (1998). Biomechanical behavior of the arterial wall and its numerical characterization. Computers in Biology and Medicine, 28(4), 377-392.
Humphrey, J. D., Strumpf, R. K., & Yin, F. C. (1990). Determination of a constitutive relation for passive myocardium: I. A new functional form. Journal of Biomechanical Engineering, 112(3), 333.
Humphrey, J. D., Strumpf, R. K., & Yin, F. C. (1990). Determination of a constitutive relation for passive myocardium: II. Parameter estimation. Journal of Biomechanical Engineering, 112(3), 340.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47(260), 583-621.
Kumar, K. (2001). Microstructure of human arteries. Journal of The Anatomical Society of India, 50(2), 127-130.
Gasser, T. C., Schulze-Bauer, C. A., & Holzapfel, G. A. (2002). A three-dimensional finite element model for arterial clamping. Journal of Biomechanical Engineering, 124(4), 355.
Kiousis, D. E., Gasser, T. C., & Holzapfel, G. A. (2007). A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Annals of biomedical engineering, 35(11), 1857-1869.
Laroche, D., Delorme, S., Anderson, T., Buithieu, J., & Diraddo, R. (2006). Computer prediction of balloon angioplasty from artery imaging. Proceedings of the Medicine Meets Virtual Reality (MMVR 2006).
Lindroos, M., Kupari, M., Heikkil?, J., & Tilvis, R. (1993). Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. Journal of the American College of Cardiology, 21(5), 1220-1225.
L & apos; Italien, G. J., Chandrasekar, N. R., Lamuraglia, G. M., Pevec, W. C., Dhara, S. A. N. D. I. P., Warnock, D. F., & Abbott, W. M. (1994). Biaxial elastic properties of rat arteries in vivo: influence of vascular wall cells on anisotropy. American Journal of Physiology-Heart and Circulatory Physiology, 267(2), H574-H579.
Lu, S. H., Sacks, M. S., Chung, S. Y., Gloeckner, D. C., Pruchnic, R., Huard, J., ... & Chancellor, M. B. (2005). Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution. Biomaterials, 26(4), 443-449.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50-60.
Monson, K. L., Barbaro, N. M., & Manley, G. T. (2008). Biaxial response of passive human cerebral arteries. Annals of Biomedical Engineering, 36(12), 2028-2041.
Mooney, M. (1940). A theory of large elastic deformation. Journal of Applied Physics, 11(9), 582-592.
Nabaei, M., & Fatouraee, N. (2012). COMPUTATIONAL MODELING OF FORMATION OF A CEREBRAL ANEURYSM UNDER THE INFLUENCE OF SMOOTH MUSCLE CELL RELAXATION. Journal of Mechanics in Medicine and Biology, 12(01).
Ogden, R. W. (1997). Non-linear elastic deformations. Courier Dover Publications.
Zulliger, M. A., Fridez, P., Hayashi, K., & Stergiopulos, N. (2004). A strain energy function for arteries accounting for wall composition and structure. Journal of biomechanics, 37(7), 989-1000.
Okamoto, R. J., Wagenseil, J. E., DeLong, W. R., Peterson, S. J., Kouchoukos, N. T., & Sundt III, T. M. (2002). Mechanical properties of dilated human ascending aorta. Annals of Biomedical Engineering, 30(5), 624-635.
Ottensmeyer, M. P., Kerdok, A. E., Howe, R. D., & Dawson, S. L. (2004). The effects of testing environment on the viscoelastic properties of soft tissues. In Medical Simulation (pp. 9-18). Springer Berlin Heidelberg.
Ouriel, K. (2001). Peripheral arterial disease. The lancet, 358(9289), 1257-1264.
Prendergast, P. J., Lally, C., Daly, S., Reid, A. J., Lee, T. C., Quinn, D., & Dolan, F. (2003). Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling. Journal of Biomechanical Engineering, 125(5), 692-699.
Powell, M. J. D. (1998). Direct search algorithms for optimization calculations. Acta Numerica, 287-336.
Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379-397.
Schulze-Bauer, C. A., & Holzapfel, G. A. (2003). Determination of constitutive equations for human arteries from clinical data. Journal of Biomechanics, 36(2), 165-169.
Sekhar, L. N., & Heros, R. C. (1981). Origin, growth, and rupture of saccular aneurysms: a review. Neurosurgery, 8(2), 248-260.
Shadwick, R. E. (1999). Mechanical design in arteries. Journal of Experimental Biology, 202(23), 3305-3313.
Stehbens, W. E. (1972). Pathology of the cerebral blood vessels. CV Mosby.
Stewart, B. F., Siscovick, D., Lind, B. K., Gardin, J. M., Gottdiener, J. S., Smith, V. E., & Otto, C. M. (1997). Clinical Factors Associated With Calcific Aortic Valve Disease fn1. Journal of the American College of Cardiology, 29(3), 630-634.
Sun, W., Sacks, M. S., & Scott, M. J. (2003). Numerical Simulations of the Planar Biaxial Mechanical Behavior of Biological Materials. ASME Summer Bioengineering, Miami, FL.
Virues Delgadillo, J. O., Delorme, S., Diraddo, R., Hatzikiriakos, S. G., & Thibault, F. (2006). Mechanical characterization of arterial wall: Should cruciform or square sample be used in biaxial testing?. Journal of Biomechanical Engineering.
Wu, W., Qi, M., Liu, X. P., Yang, D. Z., & Wang, W. Q. (2007). Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis. Journal of Biomechanics, 40(13), 3034-3040.
Aronow, W. S., Schwartz, K. S., & Koenigsberg, M. (1987). Correlation of serum lipids, calcium, and phosphorus, diabetes mellitus and history of systemic hypertension with presence or absence of calcified or thickened aortic cusps or root in elderly patients. The American Journal of Cardiology, 59(9), 998-999.
Busby, D. E., & Burton, A. C. (1965). The effect of age on the elasticity of the major brain arteries. Canadian Journal of Physiology and Pharmacology, 43(2), 185-202.
Coulson, R. J., Cipolla, M. J., Vitullo, L., & Chesler, N. C. (2004). Mechanical properties of rat middle cerebral arteries with and without myogenic tone. Journal of Biomechanical Engineering, 126(1), 76-81.
Cox, R. H. (1984). Viscoelastic properties of canine pulmonary arteries. American Journal of Physiology-Heart and Circulatory Physiology, 246(1), H90-H96.
Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003). Experimentally tractable, pseudo-elastic constitutive law for biomembranes: I. Theory. Journal of Biomechanical Engineering, 125(1), 94-99.
Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003). Experimentally tractable, pseudo-elastic constitutive law for biomembranes: II. Application. Journal of Biomechanical Engineering, 125(1), 100-105.
Dixon, S. A., Heikes, R. G., & Vito, R. P. (2003). Constitutive modeling of porcine coronary arteries using designed experiments. Journal of Biomechanical Engineering, 125(2), 274-279.
Dumoulin, C., & Cochelin, B. (2000). Mechanical behaviour modelling of balloon-expandable stents. Journal of Biomechanics, 33(11), 1461-1470.
Burleson, A. C., Strother, C. M., & Turitto, V. T. (1995). Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery, 37(4), 774-784.
Gasser, T. C., & Holzapfel, G. A. (2007). Modeling plaque fissuring and dissection during balloon angioplasty intervention. Annals of Biomedical Engineering, 35(5), 711-723.
Gourisankaran, V., & Sharma, M. G. (2000). The finite element analysis of stresses in atherosclerotic arteries during balloon angioplasty. Critical Reviews™ in Biomedical Engineering, 28(1 & 2).
Guccione, J. M., McCulloch, A. D., & Waldman, L. K. (1991). Passive material properties of intact ventricular myocardium determined from a cylindrical model. Journal of Biomechanical Engineering, 113(1), 42-55.
Humphrey, J. D. (2004). A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries.
Holzapfel, G. A. (2005). Similarities between soft biological tissues and rubberlike materials. In CONSTITUTIVE MODELS FOR RUBBER-PROCEEDINGS- (Vol. 4, p. 607). Balkema.
Holzapfel, G. A., Eberlein, R., Wriggers, P., & Weizs?cker, H. W. (1996). Large strain analysis of soft biological membranes: Formulation and finite element analysis. Computer Methods in Applied Mechanics and Engineering, 132(1), 45-61.
Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity and the Physical Science of Solids, 61(1-3), 1-48.
Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2004). Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. Journal of Biomechanical Engineering, 126(2), 264-275.
Holzapfel, G. A., & Weizs?cker, H. W. (1998). Biomechanical behavior of the arterial wall and its numerical characterization. Computers in Biology and Medicine, 28(4), 377-392.
Humphrey, J. D., Strumpf, R. K., & Yin, F. C. (1990). Determination of a constitutive relation for passive myocardium: I. A new functional form. Journal of Biomechanical Engineering, 112(3), 333.
Humphrey, J. D., Strumpf, R. K., & Yin, F. C. (1990). Determination of a constitutive relation for passive myocardium: II. Parameter estimation. Journal of Biomechanical Engineering, 112(3), 340.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47(260), 583-621.
Kumar, K. (2001). Microstructure of human arteries. Journal of The Anatomical Society of India, 50(2), 127-130.
Gasser, T. C., Schulze-Bauer, C. A., & Holzapfel, G. A. (2002). A three-dimensional finite element model for arterial clamping. Journal of Biomechanical Engineering, 124(4), 355.
Kiousis, D. E., Gasser, T. C., & Holzapfel, G. A. (2007). A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Annals of biomedical engineering, 35(11), 1857-1869.
Laroche, D., Delorme, S., Anderson, T., Buithieu, J., & Diraddo, R. (2006). Computer prediction of balloon angioplasty from artery imaging. Proceedings of the Medicine Meets Virtual Reality (MMVR 2006).
Lindroos, M., Kupari, M., Heikkil?, J., & Tilvis, R. (1993). Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. Journal of the American College of Cardiology, 21(5), 1220-1225.
L & apos; Italien, G. J., Chandrasekar, N. R., Lamuraglia, G. M., Pevec, W. C., Dhara, S. A. N. D. I. P., Warnock, D. F., & Abbott, W. M. (1994). Biaxial elastic properties of rat arteries in vivo: influence of vascular wall cells on anisotropy. American Journal of Physiology-Heart and Circulatory Physiology, 267(2), H574-H579.
Lu, S. H., Sacks, M. S., Chung, S. Y., Gloeckner, D. C., Pruchnic, R., Huard, J., ... & Chancellor, M. B. (2005). Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution. Biomaterials, 26(4), 443-449.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50-60.
Monson, K. L., Barbaro, N. M., & Manley, G. T. (2008). Biaxial response of passive human cerebral arteries. Annals of Biomedical Engineering, 36(12), 2028-2041.
Mooney, M. (1940). A theory of large elastic deformation. Journal of Applied Physics, 11(9), 582-592.
Nabaei, M., & Fatouraee, N. (2012). COMPUTATIONAL MODELING OF FORMATION OF A CEREBRAL ANEURYSM UNDER THE INFLUENCE OF SMOOTH MUSCLE CELL RELAXATION. Journal of Mechanics in Medicine and Biology, 12(01).
Ogden, R. W. (1997). Non-linear elastic deformations. Courier Dover Publications.
Zulliger, M. A., Fridez, P., Hayashi, K., & Stergiopulos, N. (2004). A strain energy function for arteries accounting for wall composition and structure. Journal of biomechanics, 37(7), 989-1000.
Okamoto, R. J., Wagenseil, J. E., DeLong, W. R., Peterson, S. J., Kouchoukos, N. T., & Sundt III, T. M. (2002). Mechanical properties of dilated human ascending aorta. Annals of Biomedical Engineering, 30(5), 624-635.
Ottensmeyer, M. P., Kerdok, A. E., Howe, R. D., & Dawson, S. L. (2004). The effects of testing environment on the viscoelastic properties of soft tissues. In Medical Simulation (pp. 9-18). Springer Berlin Heidelberg.
Ouriel, K. (2001). Peripheral arterial disease. The lancet, 358(9289), 1257-1264.
Prendergast, P. J., Lally, C., Daly, S., Reid, A. J., Lee, T. C., Quinn, D., & Dolan, F. (2003). Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling. Journal of Biomechanical Engineering, 125(5), 692-699.
Powell, M. J. D. (1998). Direct search algorithms for optimization calculations. Acta Numerica, 287-336.
Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379-397.
Schulze-Bauer, C. A., & Holzapfel, G. A. (2003). Determination of constitutive equations for human arteries from clinical data. Journal of Biomechanics, 36(2), 165-169.
Sekhar, L. N., & Heros, R. C. (1981). Origin, growth, and rupture of saccular aneurysms: a review. Neurosurgery, 8(2), 248-260.
Shadwick, R. E. (1999). Mechanical design in arteries. Journal of Experimental Biology, 202(23), 3305-3313.
Stehbens, W. E. (1972). Pathology of the cerebral blood vessels. CV Mosby.
Stewart, B. F., Siscovick, D., Lind, B. K., Gardin, J. M., Gottdiener, J. S., Smith, V. E., & Otto, C. M. (1997). Clinical Factors Associated With Calcific Aortic Valve Disease fn1. Journal of the American College of Cardiology, 29(3), 630-634.
Sun, W., Sacks, M. S., & Scott, M. J. (2003). Numerical Simulations of the Planar Biaxial Mechanical Behavior of Biological Materials. ASME Summer Bioengineering, Miami, FL.
Virues Delgadillo, J. O., Delorme, S., Diraddo, R., Hatzikiriakos, S. G., & Thibault, F. (2006). Mechanical characterization of arterial wall: Should cruciform or square sample be used in biaxial testing?. Journal of Biomechanical Engineering.
Wu, W., Qi, M., Liu, X. P., Yang, D. Z., & Wang, W. Q. (2007). Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis. Journal of Biomechanics, 40(13), 3034-3040.