Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Engineering Solid Mechanics » Determination of permissible defect size for solid axles loaded under fully-reversed rotating bending

Journals

  • IJIEC (697)
  • MSL (2637)
  • DSL (631)
  • CCL (482)
  • USCM (1092)
  • ESM (398)
  • AC (547)
  • JPM (228)
  • IJDS (809)
  • JFS (81)

ESM Volumes

    • Volume 1 (16)
      • Issue 1 (4)
      • Issue 2 (4)
      • Issue 3 (4)
      • Issue 4 (4)
    • Volume 2 (32)
      • Issue 1 (6)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 3 (27)
      • Issue 1 (7)
      • Issue 2 (7)
      • Issue 3 (6)
      • Issue 4 (7)
    • Volume 4 (25)
      • Issue 1 (5)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)
    • Volume 5 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 6 (32)
      • Issue 1 (8)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (8)
    • Volume 7 (28)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (7)
      • Issue 4 (8)
    • Volume 8 (36)
      • Issue 1 (8)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 9 (36)
      • Issue 1 (9)
      • Issue 2 (9)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 10 (35)
      • Issue 1 (9)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 11 (39)
      • Issue 1 (10)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 12 (41)
      • Issue 1 (10)
      • Issue 2 (9)
      • Issue 3 (12)
      • Issue 4 (10)
    • Volume 13 (26)
      • Issue 1 (12)
      • Issue 2 (7)
      • Issue 3 (7)

Keywords

Supply chain management(158)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(112)
Supply chain(106)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(92)
SMEs(85)
optimization(83)
Financial performance(81)
Job satisfaction(78)
Factor analysis(78)
Trust(78)
Knowledge Management(76)
Genetic Algorithm(75)
Sustainability(73)
Social media(73)
TOPSIS(73)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(53)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Jumadil Saputra(35)
Muhammad Turki Alshurideh(35)
Barween Al Kurdi(32)
Hassan Ghodrati(31)
Dmaithan Almajali(31)
Ahmad Makui(30)
Mohammad Khodaei Valahzaghard(30)
Ni Nyoman Kerti Yasa(29)
Basrowi Basrowi(29)
Shankar Chakraborty(29)
Prasadja Ricardianto(28)
Haitham M. Alzoubi(27)
Sulieman Ibraheem Shelash Al-Hawary(27)
Ali Harounabadi(26)


» Show all authors

Countries

Iran(2155)
Indonesia(1217)
India(768)
Jordan(731)
Vietnam(494)
Malaysia(418)
Saudi Arabia(411)
United Arab Emirates(210)
China(151)
Thailand(149)
United States(103)
Turkey(98)
Ukraine(97)
Egypt(90)
Canada(83)
Pakistan(81)
Peru(75)
United Kingdom(73)
Nigeria(73)
Morocco(67)


» Show all countries

Engineering Solid Mechanics

ISSN 2291-8752 (Online) - ISSN 2291-8744 (Print)
Quarterly Publication
Volume 1 Issue 1 pp. 27-36 , 2013

Determination of permissible defect size for solid axles loaded under fully-reversed rotating bending Pages 27-36 Right click to download the paper Download PDF

Authors: A.R. Torabi, M.R.M. Aliha

DOI: 10.5267/j.esm.2013.06.003

Keywords: Defect, Crack growth, C35 steel, Fatigue, Four-point bending, Fracture Mechanics

Abstract: The aim of the present work was to develop a guideline for approving the railway axles made of C35 steel and containing surface and/or in-body defects after manufacturing. First, several through and part-through circular cracks were modeled on the surface and in the body of the axle at its critical cross-section. Then, the permissible size of such cracks was determined by using the fracture mechanics. To verify the validity of the guideline, the theoretical result for the semi-circular surface crack was compared with the allowable size prescribed by the international railway standard. A very good agreement was found to exist between the predicted and the standard values.

How to cite this paper
Torabi, A & Aliha, M. (2013). Determination of permissible defect size for solid axles loaded under fully-reversed rotating bending.Engineering Solid Mechanics, 1(1), 27-36.

Refrences
Alihosseini, H., & Dehghani, K. (2010). Modeling and failure analysis of a broken railway axle: Effects of surface defects and inclusions. Journal of Failure Analysis and Prevention, 10(3), 233-239.
ASTM standards, E647-95 (1995). Standard test method for measurement of fatigue crack growth rates.
Bayraktar, M., Tahrali, N., & Guclu, R. (2010). Reliability and fatigue life evaluation of railway axles. Journal of mechanical science and technology, 24(3), 671-679.
Beretta, S., Ghidini, A., & Lombardo, F. (2005). Fracture mechanics and scale effects in the fatigue of railway axles. Engineering fracture mechanics, 72(2), 195-208.
Beretta, S., Carboni, M., Conte, A. L., Regazzi, D., Trasatti, S., & Rizzi, M. (2011). Crack growth studies in railway axles under corrosion fatigue: Full-scale experiments and model validation. Procedia Engineering, 10, 3650-3655.
Beretta, S., & Carboni, M. (2011). Variable amplitude fatigue crack growth in a mild steel for railway axles: experiments and predictive models. Engineering Fracture Mechanics, 78(5), 848-862.
Carpinteri, A., & Brighenti, R. (1996). Part-through cracks in round bars under cyclic combined axial and bending loading. International journal of fatigue, 18(1), 33-39.
Carpinteri, A., Brighenti, R., & Spagnoli, A. (1998). Surface flaws in cylindrical shafts under rotary bending. Fatigue & fracture of engineering materials & structures, 21(9), 1027-1035.
Carpinteri, A., Brighenti, R., & Vantadori, S. (2006). Surface cracks in notched round bars under cyclic tension and bending. International journal of fatigue, 28(3), 251-260.
El Haddad, M. H., Topper, T. H., & Smith, K. N. (1979). Prediction of non propagating cracks. Engineering Fracture Mechanics, 11(3), 573-584.
International railway standards, Standard for quality control in production of road axel. UIC 811-1 (1983).
Linhart, V., & Černý, I. (2011). An effect of strength of railway axle steels on fatigue resistance under press fit. Engineering Fracture Mechanics, 78(5), 731-741.
Luke, M., Varfolomeev, I., Lütkepohl, K., & Esderts, A. (2010). Fracture mechanics assessment of railway axles: experimental characterization and computation. Engineering Failure Analysis, 17(3), 617-623.
Luke, M., Varfolomeev, I., Lütkepohl, K., & Esderts, A. (2011). Fatigue crack growth in railway axles: assessment concept and validation tests. Engineering Fracture Mechanics, 78(5), 714-730.
Madia, M., Beretta, S., & Zerbst, U. (2008). An investigation on the influence of rotary bending and press fitting on stress intensity factors and fatigue crack growth in railway axles. Engineering Fracture Mechanics, 75(8), 1906-1920.
Makino, T., Kato, T., & Hirakawa, K. (2011). Review of the fatigue damage tolerance of high-speed railway axles in Japan. Engineering Fracture Mechanics, 78(5), 810-825.
Nasr, A., Nadot, Y., Bouraoui, C., Fathallah, R., & Jouiad, M. (2010). Fatigue initiation in C35 steel: Influence of loading and defect. International Journal of Fatigue, 32(4), 780-787.
Orringer, O., Orkisz, J., & Świderski, Z. (1992). Residual Stress in Rails: Field experience and test results (Vol. 1). Springer.
Paris, P. C., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85, 528.
Shigley, J. E., Mischke, C. R., Budynas, R. G., Liu, X., & Gao, Z. (1989). Mechanical engineering design (Vol. 89). New York: McGraw-Hill.
Sih, G. C. (1991). Mechanics of fracture initiation and propagation: surface and volume energy density applied as failure criterion. Kluwer Academic.
Taylor, D. (2005). Analysis of fatigue failures in components using the theory of critical distances. Engineering Failure Analysis, 12(6), 906-914.
Technical data for Iran railway materials, Iran railway research center (IRRC), Iran (2000).
Zerbst, U., Mädler, K., & Hintze, H. (2005). Fracture mechanics in railway applications––an overview. Engineering Fracture Mechanics, 72(2), 163-194.
Zerbst, U., Schödel, M., & Beier, H. T. (2011). Parameters affecting the damage tolerance behaviour of railway axles. Engineering Fracture Mechanics, 78(5), 793-809.
Zhang, H., & Fatemi, A. (2010). Short fatigue crack growth behavior under mixed-mode loading. International journal of fracture, 165(1), 1-19.
  • 34
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Engineering Solid Mechanics | Year: 2013 | Volume: 1 | Issue: 1 | Views: 11816 | Reviews: 0

Related Articles:
  • Photoelastic study of bi-material notches: Effect of mismatch parameters
  • Impact damage simulation in elastic and viscoelastic media
  • Analysis and modeling of rail maintenance costs
  • Computer aided FEA simulation of EN45A parabolic leaf spring
  • Optimization of process parameters for friction Stir welding of dissimilar ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com