How to cite this paper
Anticona, A., Zúñiga, C., Santos, A., Lorenzon, A & Filho, P. (2023). Gis and fuzzy logic approach for forest fire risk modeling in the Cajamarca region, Peru.Decision Science Letters , 12(2), 353-368.
Refrences
Abedi Gheshlaghi, H., Feizizadeh, B., & Blaschke, T. (2020). GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. Journal of Environmental Planning and Management, 63(3), 481-499.
https://doi.org/10.1080/09640568.2019.1594726
Adab, H., Kanniah, K. D., & Solaimani, K. (2013). Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural hazards, 65(3), 1723-1743. https://doi.org/10.1007/s11069-012-0450-8
Adab, H., Kanniah, D., & Solaimani, K. (2011). GIS-based probability assessment of fire risk in grassland and forested landscapes of Golestan Province, Iran. In International conference on environmental and computer science IPCBEE (Vol. 19, p. 2011).
Adámek, M., Bobek, P., Hadincová, V., Wild, J., & Kopecký, M. (2015). Forest fires within a temperate landscape: a decadal and millennial perspective from a sandstone region in Central Europe. Forest Ecology and Management, 336, 81-90. https://doi.org/10.1016/j.foreco.2014.10.014
Agarwal, J., Cohen, K., & Kumar, M. (2013). Fuzzy Logic Based Real-time Prediction Model for Wild-land Forest Fires. In AIAA Infotech@ Aerospace (I@ A) Conference (p. 5060). https://doi.org/10.2514/6.2013-5060
Aghajani Mir, M. A., Ghazvinei, P. T., Sulaiman, N. M. N., Basri, N. E. A., Saheri, S., Mahmood, N. Z., ... & Aghamohammadi, N. (2016). Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model. Journal of environmental management, 166, 109-115. https://doi.org/10.1016/j.jenvman.2015.09.028
Ajin, R. S., Loghin, A. M., Vinod, P. G., & Jacob, M. K. (2016). Forest fire risk zone mapping using RS and GIS techniques: a study in Achankovil Forest Division, Kerala, India. Journal of Earth, Environment and Health Sciences, 2(3), 109.
https://doi.org/10.4103/2423-7752.199288
Alavanja, M. C., & Bonner, M. R. (2012). Occupational pesticide exposures and cancer risk: a review. Journal of Toxicology and Environmental Health, Part B, 15(4), 238-263. https://doi.org/10.1080/10937404.2012.632358
Álvarez, R.Y. (2000). Aplicación de tecnología S.I.G. al Estudio del Riesgo y Prevención de Incendios Forestales en el área de Sierra Espuña-Gebas (Región de Murcia). TDR (Tesis Dr. en Red). Universidad de Murcia.
Armenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279-289. https://doi.org/10.1016/j.agrformet.2010.11.002
Barlow, J., Parry, L., Gardner, T. A., Ferreira, J., Aragão, L. E., Carmenta, R., ... & Cochrane, M. A. (2012). The critical importance of considering fire in REDD+ programs. Biological Conservation, 154, 1-8.
https://doi.org/10.1016/j.biocon.2012.03.034
Bilobrovec, M., Marçal, R. F. M., & Kovaleski, J. L. (2004). Implementação de um sistema de controle inteligente utilizando a lógica fuzzy. XI SIMPEP, Bauru/Brasil, 42.
Bodí, M. B., Cerdà, A., Mataix-Solera, J., & Doerr, S. H. (2012). Efectos de los incendios forestales en la vegetación y el suelo en la cuenca mediterránea: revisión bibliográfica. Boletín de la asociación de Geógrafos Españoles.
https://doi.org/10.21138/bage.2058
Briones, F.A. (2001). Manual de formación de incendios forestales para cuadrillas. 2nd ed. Zaragoza : Gobierno de Aragón., Zaragoza, España.
Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems. Oxford university press. https://doi.org/10.2307/144481
Burry, L. S., Palacio, P. I., Somoza, M., de Mandri, M. E. T., Lindskoug, H. B., Marconetto, M. B., & D'Antoni, H. L. (2018). Dynamics of fire, precipitation, vegetation and NDVI in dry forest environments in NW Argentina. Contributions to environmental archaeology. Journal of Archaeological Science: Reports, 18, 747-757.
https://doi.org/10.1016/j.jasrep.2017.05.019
Chandler, C., Cheney, P., Thomas, P., Trabaud, L., & Williams, D. (1983). Fire in forestry: forest fire behavior and effects. J. Wiley & Sons, New York.
Chen, K., Blong, R., & Jacobson, C. (2001). MCE-RISK: integrating multicriteria evaluation and GIS for risk decision-making in natural hazards. Environmental Modelling & Software, 16(4), 387-397.
https://doi.org/10.1016/S1364-8152(01)00006-8
Chichipe, M. E. M., López, R. S., & Castillo, E. B. (2017). Análisis multitemporal de la deforestación usando la clasificación basada en objetos, distrito de Leymebamba (Perú). INDES Revista de Investigación para el Desarrollo Sustentable, 3(2), 67-76. https://doi.org/10.25127/indes.201502.008
Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Martín, P., Vilar, L., ... & Salas, J. (2007). Generación de un Modelo de Peligro de Incendios Forestales mediante Teledetección y SIG. Teledetección-Hacia un mejor entendimiento de la dinámica global y regional. Madrid: Editorial Martín, 19-26.
Chuvieco, E., Aguado, I., Jurdao, S., Pettinari, M. L., Yebra, M., Salas, J., ... & Martínez-Vega, F. J. (2012). Integrating geospatial information into fire risk assessment. International journal of wildland fire, 23(5), 606-619.
Cipriani, H. N., Pereira, J. A. A., Silva, R. A., Freitas, S. G. D., & Oliveira, L. T. D. (2011). Fire risk map for the Serra de São Domingos Municipal park, Poços de caldas, MG. Cerne, 17, 77-83. https://doi.org/10.1590/s0104-77602011000100009
Corro, J. P., & Tafur, C. M. (2015). Calidad Biológica del agua del río Amojú, Jaén, Cajamarca. 2013. SCIÉNDO, 18(1).
https://doi.org/10.36955/riulcb.2014v1n2.005
Cortina, C., & Boggia, A. (2014). Development of policies for Natura 2000 sites: A multi-criteria approach to support decision makers. Journal of environmental management, 141, 138-145. https://doi.org/10.1016/j.jenvman.2014.02.039
Costa, L., Thonicke, K., Poulter, B., & Badeck, F. W. (2011). Sensitivity of Portuguese forest fires to climatic, human, and landscape variables: subnational differences between fire drivers in extreme fire years and decadal averages. Regional Environmental Change, 11(3), 543-551. https://doi.org/10.1007/s10113-010-0169-6
Cruz Espíndola, M. Á., Rodríguez Trejo, D. A., Villanueva Morales, A., & Santillán Pérez, J. (2017). Factores sociales de uso del suelo y vegetación asociados a los incendios forestales en Hidalgo. Revista mexicana de ciencias forestales, 8(41), 139-163.
Cruz, J.C., Carvalho Neto, R.M., Cruz, R.C. (2013). Balanço Hídrico Climatológico Geoespacializado em Raster - BHCgeo.
da Silva, R. G., dos Santos, A. R., Pelúzio, J. B. E., Fiedler, N. C., Juvanhol, R. S., de Souza, K. B., & Branco, E. R. F. (2021). Vegetation trends in a protected area of the Brazilian Atlantic forest. Ecological Engineering, 162, 106180.
https://doi.org/10.1016/j.ecoleng.2021.106180
De León Mata, G.D., Pinedo Álvarez, A., & Martínez Guerrero, J.H. (2014). Application of remote sensing in the analysis of landscape fragmentation in Cuchillas de la Zarca, Mexico. nvestigaciones geográficas, 84, 42–53. https://doi.org/10.14350/rig.36568
Díaz-Hormazábal, I., & González, M.E. (2016). Spatio-temporal analyses of wildfires in the region of Maule, Chile. Bosque 37, 147–158. https://doi.org/10.4067/S0717-92002016000100014
Didan, K. (2015). MOD13Q1 MODIS / Índices de Vegetação Terra 16 dias L3 Global 250m Rede SIN V006 [Conjunto de dados]. DAAC, NASA EOSDIS LP. https://doi.org/10.5067 / MODIS / MOD13Q1.006
Bui, D. T., Bui, Q. T., Nguyen, Q. P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and forest meteorology, 233, 32-44.
https://doi.org/http://dx.doi.org/10.1016/j.agrformet.2016.11.002
Elaalem, M., Comber, A., & Fisher, P. (2010, May). Land evaluation techniques comparing fuzzy AHP with TOPSIS methods. In 13th AGILE international conference on geographic information science (Vol. 2010, pp. 1-8).
EMBRAPA, E.B. de P.A. (1979). Sumula da X reunião técnica de levantamento de solos. Serviço Nac. Levant. E Conserv. Solos 10, 83.
Erdin, C., & Çağlar, M. (2021). Rural Fire Risk Assessment in GIS Environment Using Fuzzy Logic and the AHP Approaches. Polish Journal of Environmental Studies, 30(6), 4971–4984. https://doi.org/10.15244/pjoes/136009
Eskandari, S. (2017). A new approach for forest fire risk modeling using fuzzy AHP and GIS in Hyrcanian forests of Iran. Arabian Journal of Geosciences, 10(8), 1-13.
https://doi.org/10.1007/s12517-017-2976-2
Eugenio, F.C., Rosa dos Santos, A., Duguy Pedra, B., Macedo Pezzopane, J.E., Deleon Martins, L., Carlette Thiengo, C., Suemi Saito, N. (2019ª). Choice of a wildfire risk system for eucalyptus plantation: a case study for FWI, FMA+ and horus systems in Brazil. Natural Hazards and Earth System Sciences Discussions. https://doi.org/10.5194/nhess-2019-350
Eugenio, F.C., Rosa dos Santos, A., Fiedler, N.C., Ribeiro, G.A., da Silva, A.G., Juvanhol, R.S., Schettino, V.R., Marcatti, G.E., Domingues, G.F., Alves dos Santos, G.M.A.D., Pezzopane, J.E.M., Pedra, B.D., Banhos, A., Martins, L.D. (2016a). GIS applied to location of fires detection towers in domain area of tropical forest. Science Total Environment, 562, 542–549. https://doi.org/10.1016/j.scitotenv.2016.03.231
Eugenio, F.C., Santos, A.R., Fiedler, N.C., Ribeiro, G.A., da Silva, A.G., dos Santos, Á.B., Paneto, G.G., Schettino, V.R., (2016b). Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil. Journal of Environmental Management, 173, 65–71. https://doi.org/10.1016/j.jenvman.2016.02.021
Eugenio, F.C., Santos, A.R., Pedra, B.D., Macedo Pezzopane, J.E., Mafia, R.G., Loureiro, E.B., Martins, L.D., Saito, N.S., (2019b). Causal, temporal and spatial statistics of wildfires in areas of planted forests in Brazil. Agricultural and Forest Meteorology, 266–267, 157–172. https://doi.org/10.1016/j.agrformet.2018.12.014
Feizizadeh, B., Blaschke, T., & Roodposhti, M.S. (2013). Integrating GIS based fuzzy set theory in multicriteria evaluation methods for landslide susceptibility mapping. International Journal of Geoinformatics.
Figueira Branco, E.R., Rosa dos Santos, A., Macedo Pezzopane, J.E., Banhos dos Santos, A., Alexandre, R.S., Bernardes, V.P., Gomes da Silva, R., Barbosa de Souza, K., Moura, M.M., 2019. Space-time analysis of vegetation trends and drought occurrence in domain area of tropical forest. Journal of Environmental Management, 246, 384-396. https://doi.org/10.1016/j.jenvman.2019.05.097
Francelino, M.R., de Rezende, E.M.C., da Silva, L.D.B. (2012). Proposta de metodologia para zoneamento ambiental de plantio de eucalipto. CERNE, 18, 275–283. https://doi.org/10.1590/S0104-77602012000200012
Ganteaume, A., & Jappiot, M. (2013). What causes large fires in Southern France. Forest Ecology and Management, 294, 76-85. https://doi.org/10.1016/j.foreco.2012.06.055
Garcia-Jimenez, S., Jurio, A., Pagola, M., De Miguel, L., Barrenechea, E., Bustince, H. (2017). Forest fire detection: A fuzzy system approach based on overlap indices. Applled Soft Computing Journal, 52, 834–842. https://doi.org/10.1016/j.asoc.2016.09.041
Ghobadi, G. J., Gholizadeh, B., & Dashliburun, O. M. (2012). Forest fire risk zone mapping from geographic information system in Northern Forests of Iran (Case study, Golestan province). International Journal of Agriculture and Crop Sciences, 4(12), 818-824.
Gil, M.J. eduardo (2020). Incendios forestales: causas e impactos. El Antoniano 4, 68–153.
Gómez-Pazo, A., & Salas, J. (2017). Modelado del peligro de ignición de incendios forestales en galicia (españa) * 7, 1–14.
Güngöroğlu, C. (2017). Determination of forest fire risk with fuzzy analytic hierarchy process and its mapping with the application of GIS: The case of Turkey/Çakırlar. Humman Ecological Risk Assessment, 23, 388–406. https://doi.org/10.1080/10807039.2016.1255136
Hoinka, K. P., Carvalho, A., & Miranda, A. I. (2009). Regional-scale weather patterns and wildland fires in central Portugal. International Journal of Wildland Fire, 18(1), 36-49.
Illera, P., Fernandez, A., & Delgado, J. A. (1996). Temporal evolution of the NDVI as an indicator of forest fire danger. International Journal of remote sensing, 17(6), 1093-1105.
https://doi.org/10.1080/01431169608949072
Jaiswal, R. K., Mukherjee, S., Raju, K. D., & Saxena, R. (2002). Forest fire risk zone mapping from satellite imagery and GIS. International journal of applied earth observation and geoinformation, 4(1), 1-10. https://doi.org/10.1016/S0303-2434(02)00006-5
Jenks, G. F. (1967). The data model concept in statistical mapping. International yearbook of cartography, 7, 186-190.
Jensen, J.R. (1986). Introductory digital image processing. Prentice – Hall, Englewood Cliffs.
Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14(2), 173-184. https://doi.org/10.1080/136588100240903
Joss, B. N., Hall, R. J., Sidders, D. M., & Keddy, T. J. (2008). Fuzzy-logic modeling of land suitability for hybrid poplar across the Prairie Provinces of Canada. Environmental monitoring and assessment, 141(1), 79-96.
https://doi.org/10.1007/s10661-007-9880-2
Juárez-Martínez, A., & Rodríguez-Trejo, D. A. (2003). Efecto de los incendios forestales en la regeneración de Pinus oocarpa var. ochoterenae. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 9(2), 125-130.
Juvanhol, R.S. (2014). Modelagem da vulnerabilidade à ocorrência e propagação de incêndios florestais. Universidade Federal Do Espírito Santo.
Kamran, K.V., Omrani, K., & Khosroshahi, S.S. (2014). Forest Fire Risk Assessment Using Multi- Criteria Analysis : A Case Study Kaleybar Forest. International Conference on Agricultural Environmental Biological Science, 30–33.
Kayet, N., Chakrabarty, A., Pathak, K., Sahoo, S., Dutta, T., & Hatai, B. K. (2020). Comparative analysis of multi-criteria probabilistic FR and AHP models for forest fire risk (FFR) mapping in Melghat Tiger Reserve (MTR) forest. Journal of Forestry Research, 31(2), 565-579. https://doi.org/10.1007/s11676-018-0826-z
Kirschenbauer, S. (2005). Applying “True 3D” Techniques to Geovisualization: An Empirical Study, in: Dykes, J., MacEachren, A.M., Kraak, M.-J. (Eds.), Exploring Geovisualization. Elsevier, pp. 363–387. https://doi.org/10.1016/B978-008044531-1/50436-X
Koutsias, N., Xanthopoulos, G., Founda, D., Xystrakis, F., Nioti, F., Pleniou, M., ... & Arianoutsou, M. (2012). On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). International Journal of Wildland Fire, 22(4), 493-507. https://doi.org/10.1071/WF12003
Leal, F.A., Souza, F.F.B. & de, Leal, G.D.S.A. (2019). Zoneamento De Riscos De Incêndios Florestais Em Regiões Hot Spot De Focos De Calor No Estado Do Acre. Nativa 7, 274. https://doi.org/10.31413/nativa.v7i3.6768
Lewis, S.M., Gross, S., Visel, A., Kelly, M., & Morrow, W. (2015). Fuzzy GIS-based multi-criteria evaluation for US Agave production as a bioenergy feedstock. GCB Bioenergy 7, 84–99. https://doi.org/10.1111/gcbb.12116
Lillesand, T.M., & Kiefer, R.W. (1994). Remote sensing and image interpretation. 2nd ed. John Wiley & Sons, Chichester.
Linn, R. R., Canfield, J. M., Cunningham, P., Edminster, C., Dupuy, J. L., & Pimont, F. (2012). Using periodic line fires to gain a new perspective on multi-dimensional aspects of forward fire spread. Agricultural and Forest Meteorology, 157, 60-76. https://doi.org/10.1016/j.agrformet.2012.01.014
Louzada, F.L.R. d. O., Alexandre Rosa dos Santos, Aderbal Gomes da Silva, André Luiz Nascente Coelho, Saito, N.S., Peluzio, T.M. de O., Thiago de Oliveira Tuler, André Luiz Campos Tebaldi, & Garcia, G. de O. (2010). Delimitação de corredores ecológicos.
Martínez, J., Chuvieco, E., Martín, P., & Gonzalez-Caban, A. (2008). Estimation of risk factors of human ignition of fires in Spain by means of logistic regression. In Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View (pp. 265-278). Albany, Calif.: US For. Serv..
McMaster, R. (1997). In memoriam: George f. jenks (1916-1996). Cartography and Geographic Information Systems, 24(1), 56-59. https://doi.org/10.1559/152304097782438764
Medrano, A.W.O. (2017). Análisis de cambio de uso de suelo al sur del cantón Samborondón mediante Sistemas de Información Geográfica y Teledetección. Universidad de Guayaquil.
Michael, Y., Helman, D., Glickman, O., Gabay, D., Brenner, S., & Lensky, I.M. (2021). Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Science Total Environment, 764, 142844. https://doi.org/10.1016/j.scitotenv.2020.142844
Mota, P.H.S., da Rocha, S.J.S.S., de Castro, N.L.M., Marcatti, G.E., França, L.C. de J., Schettini, B.L.S., Villanova, P.H., dos Santos, H.T., & dos Santos, A.R. (2019). Forest fire hazard zoning in Mato Grosso State, Brazil. Land use policy 88, 104206. https://doi.org/10.1016/j.landusepol.2019.104206
Muñoz, R.V. (2000). Las quemas incontroladas como causa de incendios forestales. Cuad. la S.E.CE 9, 13–26.
Nebot, À., & Mugica, F. (2021). Forest fire forecasting using fuzzy logic models. Forests 12. https://doi.org/10.3390/f12081005
Neto, G.B.S., Bayma, A.P., de Faria, K.M.S., de Oliviera, E.G., & Menezes, P.H.B.J. (2016). Riscos de incêndios florestais no parque nacional de Brasília. Brasilian Territorium 23, 161–170. https://doi.org/10.14195/1647-7723_23_13
Novo, A., Fariñas-Álvarez, N., Martínez-Sánchez, J., González-Jorge, H., Fernández-Alonso, J.M., & Lorenzo, H. (2020). Mapping Forest Fire Risk — A Case Study in. Remote Sens. 12.
Oldeland, J., Dorigo, W., Lieckfeld, L., Lucieer, A., & Jürgens, N. (2010). Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery. Remote sensing of Environment, 114(6), 1155-1166. https://doi.org/10.1016/j.rse.2010.01.003
Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review. European journal of operational research, 111(3), 423-447. https://doi.org/10.1016/S0377-2217(98)00186-6
Paëgelow, M., Camacho Olmedo, M.T., & Menor Toribio, J. (2004). Modelizacion prospectiva del paisaje mediante Sistemas de Informacion Geografica. Geofocus 3, 22–24.
Paz, S., Carmel, Y., Jahshan, F., & Shoshany, M. (2011). Post-fire analysis of pre-fire mapping of fire-risk: a recent case study from Mt. Carmel (Israel). Forest Ecology and Management, 262(7), 1184-1188.
https://doi.org/10.1016/j.foreco.2011.06.011
Peña, M. J. L., Reynel-Rodríguez, C., Zevallos-Pollito, P., Bulnes-Soriano, F., & Pérez-Ojeda del Arco, A. (2007). Diversidad, composición florística y endemismos en los bosques estacionalmente secos alterados del distrito de Jaén, Perú. Ecología aplicada, 6(1-2), 9-22. https://doi.org/10.21704/rea.v6i1-2.336
Pereira, M. G., Trigo, R. M., da Camara, C. C., Pereira, J. M., & Leite, S. M. (2005). Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129(1-2), 11-25.
https://doi.org/10.1016/j.agrformet.2004.12.007
Phillips, T., Leyk, S., Rajaram, H., Colgan, W., Abdalati, W., McGrath, D., & Steffen, K. (2011). Modeling moulin distribution on Sermeq Avannarleq glacier using ASTER and WorldView imagery and fuzzy set theory. Remote Sense Environment, 115, 2292–2301. https://doi.org/10.1016/j.rse.2011.04.029
Qiu, F., Chastain, B., Zhou, Y., Zhang, C., & Sridharan, H. (2013). Modeling land suitability/capability using fuzzy evaluation. GeoJournal 79, 167–182. https://doi.org/10.1007/s10708-013-9503-0
Ramiirez, D.E.U. (2017). Zonificación de amenaza a incendios forestales en el municipio de Riohacha, La Guajira. Trabajo de especialización en Geomática.Universidad Militar Nueva Granada, Facultad de Ingeniería, Especialización En Geomática, Bogota, Colombia.
Ribeiro, L., Koproski, L. de P., Stolle, L., Lingnau, C., Soares, R.V., & Batista, A.C. (2008). Zoneamento de riscos de incêndios florestais para a fazenda experimental do Canguiri, Pinhais (PR). Floresta 38, 561–572. https://doi.org/http://dx.doi.org/10.5380/rf.v38i3.12430
Rojas, M.F.C. (2013). Evaluación de zonas vulnerables a incendios forestales en bosques de alta montaña del Estado de México. Universidad Autónoma del Estado de México Programa de Maestría y Doctorado en Ciencias Agropecuarias y Recursos Naturales.
Saaty, T.L., & Vargas, L.G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, 2nd ed, …-Driven Demand and Operations Management Models. Kluwer Academic Publishers, Boston. https://doi.org/10.1007/978-1-4614-3597-6
Santos, A.R., Eugenio, F.C., & Louzada, F.L.R. de O., (2010a). ArcGIS 9.3 Total: Aplicação para Dados Espaciais.
Santos, A.R., Machado, T., & Saito, N. (2010b). Spring 5.1.2 passo a passo: aplicações práticas, Alegre, ES: CAUFES.
Santos, A.R., Paterlini, E.M., Fiedler, N.C., Ribeiro, C.A.A.S., Lorenzon, A.S., Domingues, G.F., Marcatti, G.E., de Castro, N.L.M., Teixeira, T.R., dos Santos, G.M.A.D.A., Juvanhol, R.S., Branco, E.R.F., Mota, P.H.S., da Silva, L.G., Pirovani, D.B., de Jesus, W.C., Santos, A.C. de A., Leite, H.G., Iwakiri, S. (2017). Fuzzy logic applied to prospecting for areas for installation of wood panel industries. Journal of Environmental Management, 193, 345–359. https://doi.org/10.1016/j.jenvman.2017.02.049
Santos, A.R. dos, Araújo, E.F., Barros, Q.S., Fernandes, M.M., de Moura Fernandes, M.R., Moreira, T.R., de Souza, K.B., da Silva, E.F., Silva, J.P.M., Santos, J.S., Billo, D., Silva, R.F., Nascimento, G.S.P., da Silva Gandine, S.M., Pinheiro, A.A., Ribeiro, W.R., Gonçalves, M.S., da Silva, S.F., Senhorelo, A.P., Heitor, F.D., Berude, L.C., & de AlmeidaTelles, L.A. (2020). Fuzzy concept applied in determining potential forest fragments for deployment of a network of ecological corridors in the Brazilian Atlantic Forest. Ecol. Indic. 115, 106423. https://doi.org/10.1016/j.ecolind.2020.106423
Santos, H.G. dos (1995). HOCHMÜLLER, D.P., CAVALCANTI, A.C., RÊGO, R.S., KER, J.C., PANOSO, L.A., AMARAL, J.A.M. do. Procedimentos normativos de levantamentos pedológicos. Rio de Janeiro, RJ.
Santos, J. S., Leite, C. C. C., Viana, J. C. C., dos Santos, A. R., Fernandes, M. M., de Souza Abreu, V., ... & de Mendonça, A. R. (2018). Delimitation of ecological corridors in the Brazilian Atlantic Forest. Ecological Indicators, 88, 414-424.
https://doi.org/10.1016/j.ecolind.2018.01.011
Schmidt, M.A.R. (2012). Uso de mapas 3D para navegação virtual: uma acordagem cognitiva. Universidade Federal do Paraná.
Schoennagel, T., Veblen, T.T., & Romme, W.H. (2004). The Interaction of Fire , Fuels , and Climate across Rocky Mountain Forests. Bioscience 54.
Sharma, K.L., Kanga, S., Nathawat, S.M., Sinha, S., & Pandey, C.P. (2012). Fuzzy AHP for forest fire risk modeling. Disaster Prev. Manag. An Int. J. 21, 160–171. https://doi.org/10.1108/09653561211219964
Silva, I., Gomes, D., & Valle, M.E. (2016). Estimativa de Risco e Perigo de Incêndios Florestais Utilizando Subconjuntos Fuzzy , k-NN Fuzzy e Subtractive Clustering.
Silva, S. de A., & Lima, J.S. de S. (2009). Lógica fuzzy no mapeamento de variáveis indicadoras de fertilidade do solo. Idesia 27, 41–46. https://doi.org/10.4067/s0718-34292009000300007
Silvert, W. (2000). Fuzzy indices of environmental conditions. Ecological modelling, 130(1-3), 111-119.
https://doi.org/10.1016/S0304-3800(00)00204-0
Soto, M.E.C. (2012). The identi fi cation and assessment of areas at risk of forest fi re using fuzzy methodology. Applied Geography, 35, 199–207. https://doi.org/10.1016/j.apgeog.2012.07.001
Teixeira, T.R., Soares Ribeiro, C.A.A., Rosa dos Santos, A., Marcatti, G.E., Lorenzon, A.S., de Castro, N.L.M., Domingues, G.F., Leite, H.G., da Costa de Menezes, S.J.M., Santos Mota, P.H., de Almeida Telles, L.A., da Silva Vieira, R. (2018). Forest biomass power plant installation scenarios. Biomass and Bioenergy 108, 35–47. https://doi.org/10.1016/j.biombioe.2017.10.006
Tervonen, T., Sepehr, A., & Kadziński, M. (2015). A multi-criteria inference approach for anti-desertification management. Journal of Environmental Management, 162, 9–19. https://doi.org/10.1016/j.jenvman.2015.07.006
THORNTHWAITE, C.W., & MATHER, J.R. (1955). The water balance, in: Publications in Climatology. Drexel Institute of Technology, Centerton, NJ, p. 104.
Tian, X., Zhao, F., Shu, L., & Wang, M. (2013). Distribution characteristics and the influence factors of forest fires in China. Forest Ecology and Management, 310, 460-467. https://doi.org/https://doi.org/10.1016/j.foreco.2013.08.025
Torres, F.T.P., & MACHADO, P.J.O. (2008). Introdução à Climatologia, Geographic. ed. Geographica, Ubá.
Torres, F.T.P., Ribeiro, G.A., Martins, S.V., & Lima, G.S. (2014). Mapeamento da suscetibilidade a ocorrências de incêndios em vegetação na área urbana de Ubá-MG. Rev. Arvore 38, 811–817. https://doi.org/10.1590/S0100-67622014000500005
Torres, F. T. P., Roque, M. P. B., Lima, G. S., Martins, S. V., & Faria, A. L. L. D. (2017). Mapeamento do risco de incêndios florestais utilizando técnicas de geoprocessamento. Floresta e Ambiente, 24. https://doi.org/10.1590/2179-8087.025615
Triepke, F. J., Brewer, C. K., Leavell, D. M., & Novak, S. J. (2008). Mapping forest alliances and associations using fuzzy systems and nearest neighbor classifiers. Remote Sensing of Environment, 112(3), 1037-1050.
https://doi.org/10.1016/j.rse.2007.07.014
Trigoso, D.I., López, R.S., Briceño, N.B.R., López, J.O.S., Fernández, D.G., Oliva, M., Huatangari, L.Q., Murga, R.E.T., Castillo, E.B., Gurbillón, M.Á.B., 2020. Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds. Agronomy 10, 18. https://doi.org/10.3390/agronomy10121898
Urrutia-Jalabert, R., González, M.E., González-Reyes, Á., Lara, A., & Garreaud, R. (2018). Ecosphere - 2018 - Urrutia‐Jalabert - Climate variability and forest fires in central and south‐central Chile. ECOSPHERE, 9(2), 1–17.
Vadrevu, K. P., Eaturu, A., & Badarinath, K. (2010). Fire risk evaluation using multicriteria analysis—a case study. Environmental monitoring and assessment, 166(1), 223-239. https://doi.org/10.1007/s10661-009-0997-3
Vargas-Sanabria, D., & Campos-Vargas, C. (2018). Sistema multi-algoritmo para la clasificación de coberturas de la tierra en el bosque seco tropical del Área de Conservación Guanacaste, Costa Rica. Rev. Tecnol. en Marcha 31, 58. https://doi.org/10.18845/tm.v31i1.3497
Vieira, G. C., de Mendonça, A. R., da Silva, G. F., Zanetti, S. S., da Silva, M. M., & Dos Santos, A. R. (2018). Prognoses of diameter and height of trees of eucalyptus using artificial intelligence. Science of the Total Environment, 619, 1473-1481. https://doi.org/10.1016/j.scitotenv.2017.11.138
Vilchis-Francés, A.Y., Díaz-Delgado, C., Magaña-Lona, D., Bâ, K.M., & Gómez-Albores, M.Á. (2015). Territorial modeling for danger of wildfires with daily prediction in the Balsas River basin | Modelado espacial para peligro de incendios forestales con predicción diaria en la cuenca del Río Balsas. Agrociencia, 49, 803–820.
Wang, Y., Li, Z., Tang, Z., & Zeng, G. (2011). A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water resources management, 25(13), 3465-3484.
https://doi.org/10.1007/s11269-011-9866-2
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western US forest wildfire activity. science, 313(5789), 940-943.
Zadeh, L.A. (1965). Fuzzy sets. Information Control, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zanella, M. E., Olímpio, J. L., Costa, M. C. L., & Dantas, E. W. C. (2013). Vulnerabilidade socioambiental do baixo curso da bacia hidrográfica do Rio Cocó, Fortaleza-CE. Sociedade & Natureza, 25, 317-332.
.
https://doi.org/10.1080/09640568.2019.1594726
Adab, H., Kanniah, K. D., & Solaimani, K. (2013). Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural hazards, 65(3), 1723-1743. https://doi.org/10.1007/s11069-012-0450-8
Adab, H., Kanniah, D., & Solaimani, K. (2011). GIS-based probability assessment of fire risk in grassland and forested landscapes of Golestan Province, Iran. In International conference on environmental and computer science IPCBEE (Vol. 19, p. 2011).
Adámek, M., Bobek, P., Hadincová, V., Wild, J., & Kopecký, M. (2015). Forest fires within a temperate landscape: a decadal and millennial perspective from a sandstone region in Central Europe. Forest Ecology and Management, 336, 81-90. https://doi.org/10.1016/j.foreco.2014.10.014
Agarwal, J., Cohen, K., & Kumar, M. (2013). Fuzzy Logic Based Real-time Prediction Model for Wild-land Forest Fires. In AIAA Infotech@ Aerospace (I@ A) Conference (p. 5060). https://doi.org/10.2514/6.2013-5060
Aghajani Mir, M. A., Ghazvinei, P. T., Sulaiman, N. M. N., Basri, N. E. A., Saheri, S., Mahmood, N. Z., ... & Aghamohammadi, N. (2016). Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model. Journal of environmental management, 166, 109-115. https://doi.org/10.1016/j.jenvman.2015.09.028
Ajin, R. S., Loghin, A. M., Vinod, P. G., & Jacob, M. K. (2016). Forest fire risk zone mapping using RS and GIS techniques: a study in Achankovil Forest Division, Kerala, India. Journal of Earth, Environment and Health Sciences, 2(3), 109.
https://doi.org/10.4103/2423-7752.199288
Alavanja, M. C., & Bonner, M. R. (2012). Occupational pesticide exposures and cancer risk: a review. Journal of Toxicology and Environmental Health, Part B, 15(4), 238-263. https://doi.org/10.1080/10937404.2012.632358
Álvarez, R.Y. (2000). Aplicación de tecnología S.I.G. al Estudio del Riesgo y Prevención de Incendios Forestales en el área de Sierra Espuña-Gebas (Región de Murcia). TDR (Tesis Dr. en Red). Universidad de Murcia.
Armenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279-289. https://doi.org/10.1016/j.agrformet.2010.11.002
Barlow, J., Parry, L., Gardner, T. A., Ferreira, J., Aragão, L. E., Carmenta, R., ... & Cochrane, M. A. (2012). The critical importance of considering fire in REDD+ programs. Biological Conservation, 154, 1-8.
https://doi.org/10.1016/j.biocon.2012.03.034
Bilobrovec, M., Marçal, R. F. M., & Kovaleski, J. L. (2004). Implementação de um sistema de controle inteligente utilizando a lógica fuzzy. XI SIMPEP, Bauru/Brasil, 42.
Bodí, M. B., Cerdà, A., Mataix-Solera, J., & Doerr, S. H. (2012). Efectos de los incendios forestales en la vegetación y el suelo en la cuenca mediterránea: revisión bibliográfica. Boletín de la asociación de Geógrafos Españoles.
https://doi.org/10.21138/bage.2058
Briones, F.A. (2001). Manual de formación de incendios forestales para cuadrillas. 2nd ed. Zaragoza : Gobierno de Aragón., Zaragoza, España.
Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems. Oxford university press. https://doi.org/10.2307/144481
Burry, L. S., Palacio, P. I., Somoza, M., de Mandri, M. E. T., Lindskoug, H. B., Marconetto, M. B., & D'Antoni, H. L. (2018). Dynamics of fire, precipitation, vegetation and NDVI in dry forest environments in NW Argentina. Contributions to environmental archaeology. Journal of Archaeological Science: Reports, 18, 747-757.
https://doi.org/10.1016/j.jasrep.2017.05.019
Chandler, C., Cheney, P., Thomas, P., Trabaud, L., & Williams, D. (1983). Fire in forestry: forest fire behavior and effects. J. Wiley & Sons, New York.
Chen, K., Blong, R., & Jacobson, C. (2001). MCE-RISK: integrating multicriteria evaluation and GIS for risk decision-making in natural hazards. Environmental Modelling & Software, 16(4), 387-397.
https://doi.org/10.1016/S1364-8152(01)00006-8
Chichipe, M. E. M., López, R. S., & Castillo, E. B. (2017). Análisis multitemporal de la deforestación usando la clasificación basada en objetos, distrito de Leymebamba (Perú). INDES Revista de Investigación para el Desarrollo Sustentable, 3(2), 67-76. https://doi.org/10.25127/indes.201502.008
Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Martín, P., Vilar, L., ... & Salas, J. (2007). Generación de un Modelo de Peligro de Incendios Forestales mediante Teledetección y SIG. Teledetección-Hacia un mejor entendimiento de la dinámica global y regional. Madrid: Editorial Martín, 19-26.
Chuvieco, E., Aguado, I., Jurdao, S., Pettinari, M. L., Yebra, M., Salas, J., ... & Martínez-Vega, F. J. (2012). Integrating geospatial information into fire risk assessment. International journal of wildland fire, 23(5), 606-619.
Cipriani, H. N., Pereira, J. A. A., Silva, R. A., Freitas, S. G. D., & Oliveira, L. T. D. (2011). Fire risk map for the Serra de São Domingos Municipal park, Poços de caldas, MG. Cerne, 17, 77-83. https://doi.org/10.1590/s0104-77602011000100009
Corro, J. P., & Tafur, C. M. (2015). Calidad Biológica del agua del río Amojú, Jaén, Cajamarca. 2013. SCIÉNDO, 18(1).
https://doi.org/10.36955/riulcb.2014v1n2.005
Cortina, C., & Boggia, A. (2014). Development of policies for Natura 2000 sites: A multi-criteria approach to support decision makers. Journal of environmental management, 141, 138-145. https://doi.org/10.1016/j.jenvman.2014.02.039
Costa, L., Thonicke, K., Poulter, B., & Badeck, F. W. (2011). Sensitivity of Portuguese forest fires to climatic, human, and landscape variables: subnational differences between fire drivers in extreme fire years and decadal averages. Regional Environmental Change, 11(3), 543-551. https://doi.org/10.1007/s10113-010-0169-6
Cruz Espíndola, M. Á., Rodríguez Trejo, D. A., Villanueva Morales, A., & Santillán Pérez, J. (2017). Factores sociales de uso del suelo y vegetación asociados a los incendios forestales en Hidalgo. Revista mexicana de ciencias forestales, 8(41), 139-163.
Cruz, J.C., Carvalho Neto, R.M., Cruz, R.C. (2013). Balanço Hídrico Climatológico Geoespacializado em Raster - BHCgeo.
da Silva, R. G., dos Santos, A. R., Pelúzio, J. B. E., Fiedler, N. C., Juvanhol, R. S., de Souza, K. B., & Branco, E. R. F. (2021). Vegetation trends in a protected area of the Brazilian Atlantic forest. Ecological Engineering, 162, 106180.
https://doi.org/10.1016/j.ecoleng.2021.106180
De León Mata, G.D., Pinedo Álvarez, A., & Martínez Guerrero, J.H. (2014). Application of remote sensing in the analysis of landscape fragmentation in Cuchillas de la Zarca, Mexico. nvestigaciones geográficas, 84, 42–53. https://doi.org/10.14350/rig.36568
Díaz-Hormazábal, I., & González, M.E. (2016). Spatio-temporal analyses of wildfires in the region of Maule, Chile. Bosque 37, 147–158. https://doi.org/10.4067/S0717-92002016000100014
Didan, K. (2015). MOD13Q1 MODIS / Índices de Vegetação Terra 16 dias L3 Global 250m Rede SIN V006 [Conjunto de dados]. DAAC, NASA EOSDIS LP. https://doi.org/10.5067 / MODIS / MOD13Q1.006
Bui, D. T., Bui, Q. T., Nguyen, Q. P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and forest meteorology, 233, 32-44.
https://doi.org/http://dx.doi.org/10.1016/j.agrformet.2016.11.002
Elaalem, M., Comber, A., & Fisher, P. (2010, May). Land evaluation techniques comparing fuzzy AHP with TOPSIS methods. In 13th AGILE international conference on geographic information science (Vol. 2010, pp. 1-8).
EMBRAPA, E.B. de P.A. (1979). Sumula da X reunião técnica de levantamento de solos. Serviço Nac. Levant. E Conserv. Solos 10, 83.
Erdin, C., & Çağlar, M. (2021). Rural Fire Risk Assessment in GIS Environment Using Fuzzy Logic and the AHP Approaches. Polish Journal of Environmental Studies, 30(6), 4971–4984. https://doi.org/10.15244/pjoes/136009
Eskandari, S. (2017). A new approach for forest fire risk modeling using fuzzy AHP and GIS in Hyrcanian forests of Iran. Arabian Journal of Geosciences, 10(8), 1-13.
https://doi.org/10.1007/s12517-017-2976-2
Eugenio, F.C., Rosa dos Santos, A., Duguy Pedra, B., Macedo Pezzopane, J.E., Deleon Martins, L., Carlette Thiengo, C., Suemi Saito, N. (2019ª). Choice of a wildfire risk system for eucalyptus plantation: a case study for FWI, FMA+ and horus systems in Brazil. Natural Hazards and Earth System Sciences Discussions. https://doi.org/10.5194/nhess-2019-350
Eugenio, F.C., Rosa dos Santos, A., Fiedler, N.C., Ribeiro, G.A., da Silva, A.G., Juvanhol, R.S., Schettino, V.R., Marcatti, G.E., Domingues, G.F., Alves dos Santos, G.M.A.D., Pezzopane, J.E.M., Pedra, B.D., Banhos, A., Martins, L.D. (2016a). GIS applied to location of fires detection towers in domain area of tropical forest. Science Total Environment, 562, 542–549. https://doi.org/10.1016/j.scitotenv.2016.03.231
Eugenio, F.C., Santos, A.R., Fiedler, N.C., Ribeiro, G.A., da Silva, A.G., dos Santos, Á.B., Paneto, G.G., Schettino, V.R., (2016b). Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil. Journal of Environmental Management, 173, 65–71. https://doi.org/10.1016/j.jenvman.2016.02.021
Eugenio, F.C., Santos, A.R., Pedra, B.D., Macedo Pezzopane, J.E., Mafia, R.G., Loureiro, E.B., Martins, L.D., Saito, N.S., (2019b). Causal, temporal and spatial statistics of wildfires in areas of planted forests in Brazil. Agricultural and Forest Meteorology, 266–267, 157–172. https://doi.org/10.1016/j.agrformet.2018.12.014
Feizizadeh, B., Blaschke, T., & Roodposhti, M.S. (2013). Integrating GIS based fuzzy set theory in multicriteria evaluation methods for landslide susceptibility mapping. International Journal of Geoinformatics.
Figueira Branco, E.R., Rosa dos Santos, A., Macedo Pezzopane, J.E., Banhos dos Santos, A., Alexandre, R.S., Bernardes, V.P., Gomes da Silva, R., Barbosa de Souza, K., Moura, M.M., 2019. Space-time analysis of vegetation trends and drought occurrence in domain area of tropical forest. Journal of Environmental Management, 246, 384-396. https://doi.org/10.1016/j.jenvman.2019.05.097
Francelino, M.R., de Rezende, E.M.C., da Silva, L.D.B. (2012). Proposta de metodologia para zoneamento ambiental de plantio de eucalipto. CERNE, 18, 275–283. https://doi.org/10.1590/S0104-77602012000200012
Ganteaume, A., & Jappiot, M. (2013). What causes large fires in Southern France. Forest Ecology and Management, 294, 76-85. https://doi.org/10.1016/j.foreco.2012.06.055
Garcia-Jimenez, S., Jurio, A., Pagola, M., De Miguel, L., Barrenechea, E., Bustince, H. (2017). Forest fire detection: A fuzzy system approach based on overlap indices. Applled Soft Computing Journal, 52, 834–842. https://doi.org/10.1016/j.asoc.2016.09.041
Ghobadi, G. J., Gholizadeh, B., & Dashliburun, O. M. (2012). Forest fire risk zone mapping from geographic information system in Northern Forests of Iran (Case study, Golestan province). International Journal of Agriculture and Crop Sciences, 4(12), 818-824.
Gil, M.J. eduardo (2020). Incendios forestales: causas e impactos. El Antoniano 4, 68–153.
Gómez-Pazo, A., & Salas, J. (2017). Modelado del peligro de ignición de incendios forestales en galicia (españa) * 7, 1–14.
Güngöroğlu, C. (2017). Determination of forest fire risk with fuzzy analytic hierarchy process and its mapping with the application of GIS: The case of Turkey/Çakırlar. Humman Ecological Risk Assessment, 23, 388–406. https://doi.org/10.1080/10807039.2016.1255136
Hoinka, K. P., Carvalho, A., & Miranda, A. I. (2009). Regional-scale weather patterns and wildland fires in central Portugal. International Journal of Wildland Fire, 18(1), 36-49.
Illera, P., Fernandez, A., & Delgado, J. A. (1996). Temporal evolution of the NDVI as an indicator of forest fire danger. International Journal of remote sensing, 17(6), 1093-1105.
https://doi.org/10.1080/01431169608949072
Jaiswal, R. K., Mukherjee, S., Raju, K. D., & Saxena, R. (2002). Forest fire risk zone mapping from satellite imagery and GIS. International journal of applied earth observation and geoinformation, 4(1), 1-10. https://doi.org/10.1016/S0303-2434(02)00006-5
Jenks, G. F. (1967). The data model concept in statistical mapping. International yearbook of cartography, 7, 186-190.
Jensen, J.R. (1986). Introductory digital image processing. Prentice – Hall, Englewood Cliffs.
Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14(2), 173-184. https://doi.org/10.1080/136588100240903
Joss, B. N., Hall, R. J., Sidders, D. M., & Keddy, T. J. (2008). Fuzzy-logic modeling of land suitability for hybrid poplar across the Prairie Provinces of Canada. Environmental monitoring and assessment, 141(1), 79-96.
https://doi.org/10.1007/s10661-007-9880-2
Juárez-Martínez, A., & Rodríguez-Trejo, D. A. (2003). Efecto de los incendios forestales en la regeneración de Pinus oocarpa var. ochoterenae. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 9(2), 125-130.
Juvanhol, R.S. (2014). Modelagem da vulnerabilidade à ocorrência e propagação de incêndios florestais. Universidade Federal Do Espírito Santo.
Kamran, K.V., Omrani, K., & Khosroshahi, S.S. (2014). Forest Fire Risk Assessment Using Multi- Criteria Analysis : A Case Study Kaleybar Forest. International Conference on Agricultural Environmental Biological Science, 30–33.
Kayet, N., Chakrabarty, A., Pathak, K., Sahoo, S., Dutta, T., & Hatai, B. K. (2020). Comparative analysis of multi-criteria probabilistic FR and AHP models for forest fire risk (FFR) mapping in Melghat Tiger Reserve (MTR) forest. Journal of Forestry Research, 31(2), 565-579. https://doi.org/10.1007/s11676-018-0826-z
Kirschenbauer, S. (2005). Applying “True 3D” Techniques to Geovisualization: An Empirical Study, in: Dykes, J., MacEachren, A.M., Kraak, M.-J. (Eds.), Exploring Geovisualization. Elsevier, pp. 363–387. https://doi.org/10.1016/B978-008044531-1/50436-X
Koutsias, N., Xanthopoulos, G., Founda, D., Xystrakis, F., Nioti, F., Pleniou, M., ... & Arianoutsou, M. (2012). On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). International Journal of Wildland Fire, 22(4), 493-507. https://doi.org/10.1071/WF12003
Leal, F.A., Souza, F.F.B. & de, Leal, G.D.S.A. (2019). Zoneamento De Riscos De Incêndios Florestais Em Regiões Hot Spot De Focos De Calor No Estado Do Acre. Nativa 7, 274. https://doi.org/10.31413/nativa.v7i3.6768
Lewis, S.M., Gross, S., Visel, A., Kelly, M., & Morrow, W. (2015). Fuzzy GIS-based multi-criteria evaluation for US Agave production as a bioenergy feedstock. GCB Bioenergy 7, 84–99. https://doi.org/10.1111/gcbb.12116
Lillesand, T.M., & Kiefer, R.W. (1994). Remote sensing and image interpretation. 2nd ed. John Wiley & Sons, Chichester.
Linn, R. R., Canfield, J. M., Cunningham, P., Edminster, C., Dupuy, J. L., & Pimont, F. (2012). Using periodic line fires to gain a new perspective on multi-dimensional aspects of forward fire spread. Agricultural and Forest Meteorology, 157, 60-76. https://doi.org/10.1016/j.agrformet.2012.01.014
Louzada, F.L.R. d. O., Alexandre Rosa dos Santos, Aderbal Gomes da Silva, André Luiz Nascente Coelho, Saito, N.S., Peluzio, T.M. de O., Thiago de Oliveira Tuler, André Luiz Campos Tebaldi, & Garcia, G. de O. (2010). Delimitação de corredores ecológicos.
Martínez, J., Chuvieco, E., Martín, P., & Gonzalez-Caban, A. (2008). Estimation of risk factors of human ignition of fires in Spain by means of logistic regression. In Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View (pp. 265-278). Albany, Calif.: US For. Serv..
McMaster, R. (1997). In memoriam: George f. jenks (1916-1996). Cartography and Geographic Information Systems, 24(1), 56-59. https://doi.org/10.1559/152304097782438764
Medrano, A.W.O. (2017). Análisis de cambio de uso de suelo al sur del cantón Samborondón mediante Sistemas de Información Geográfica y Teledetección. Universidad de Guayaquil.
Michael, Y., Helman, D., Glickman, O., Gabay, D., Brenner, S., & Lensky, I.M. (2021). Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Science Total Environment, 764, 142844. https://doi.org/10.1016/j.scitotenv.2020.142844
Mota, P.H.S., da Rocha, S.J.S.S., de Castro, N.L.M., Marcatti, G.E., França, L.C. de J., Schettini, B.L.S., Villanova, P.H., dos Santos, H.T., & dos Santos, A.R. (2019). Forest fire hazard zoning in Mato Grosso State, Brazil. Land use policy 88, 104206. https://doi.org/10.1016/j.landusepol.2019.104206
Muñoz, R.V. (2000). Las quemas incontroladas como causa de incendios forestales. Cuad. la S.E.CE 9, 13–26.
Nebot, À., & Mugica, F. (2021). Forest fire forecasting using fuzzy logic models. Forests 12. https://doi.org/10.3390/f12081005
Neto, G.B.S., Bayma, A.P., de Faria, K.M.S., de Oliviera, E.G., & Menezes, P.H.B.J. (2016). Riscos de incêndios florestais no parque nacional de Brasília. Brasilian Territorium 23, 161–170. https://doi.org/10.14195/1647-7723_23_13
Novo, A., Fariñas-Álvarez, N., Martínez-Sánchez, J., González-Jorge, H., Fernández-Alonso, J.M., & Lorenzo, H. (2020). Mapping Forest Fire Risk — A Case Study in. Remote Sens. 12.
Oldeland, J., Dorigo, W., Lieckfeld, L., Lucieer, A., & Jürgens, N. (2010). Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery. Remote sensing of Environment, 114(6), 1155-1166. https://doi.org/10.1016/j.rse.2010.01.003
Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review. European journal of operational research, 111(3), 423-447. https://doi.org/10.1016/S0377-2217(98)00186-6
Paëgelow, M., Camacho Olmedo, M.T., & Menor Toribio, J. (2004). Modelizacion prospectiva del paisaje mediante Sistemas de Informacion Geografica. Geofocus 3, 22–24.
Paz, S., Carmel, Y., Jahshan, F., & Shoshany, M. (2011). Post-fire analysis of pre-fire mapping of fire-risk: a recent case study from Mt. Carmel (Israel). Forest Ecology and Management, 262(7), 1184-1188.
https://doi.org/10.1016/j.foreco.2011.06.011
Peña, M. J. L., Reynel-Rodríguez, C., Zevallos-Pollito, P., Bulnes-Soriano, F., & Pérez-Ojeda del Arco, A. (2007). Diversidad, composición florística y endemismos en los bosques estacionalmente secos alterados del distrito de Jaén, Perú. Ecología aplicada, 6(1-2), 9-22. https://doi.org/10.21704/rea.v6i1-2.336
Pereira, M. G., Trigo, R. M., da Camara, C. C., Pereira, J. M., & Leite, S. M. (2005). Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129(1-2), 11-25.
https://doi.org/10.1016/j.agrformet.2004.12.007
Phillips, T., Leyk, S., Rajaram, H., Colgan, W., Abdalati, W., McGrath, D., & Steffen, K. (2011). Modeling moulin distribution on Sermeq Avannarleq glacier using ASTER and WorldView imagery and fuzzy set theory. Remote Sense Environment, 115, 2292–2301. https://doi.org/10.1016/j.rse.2011.04.029
Qiu, F., Chastain, B., Zhou, Y., Zhang, C., & Sridharan, H. (2013). Modeling land suitability/capability using fuzzy evaluation. GeoJournal 79, 167–182. https://doi.org/10.1007/s10708-013-9503-0
Ramiirez, D.E.U. (2017). Zonificación de amenaza a incendios forestales en el municipio de Riohacha, La Guajira. Trabajo de especialización en Geomática.Universidad Militar Nueva Granada, Facultad de Ingeniería, Especialización En Geomática, Bogota, Colombia.
Ribeiro, L., Koproski, L. de P., Stolle, L., Lingnau, C., Soares, R.V., & Batista, A.C. (2008). Zoneamento de riscos de incêndios florestais para a fazenda experimental do Canguiri, Pinhais (PR). Floresta 38, 561–572. https://doi.org/http://dx.doi.org/10.5380/rf.v38i3.12430
Rojas, M.F.C. (2013). Evaluación de zonas vulnerables a incendios forestales en bosques de alta montaña del Estado de México. Universidad Autónoma del Estado de México Programa de Maestría y Doctorado en Ciencias Agropecuarias y Recursos Naturales.
Saaty, T.L., & Vargas, L.G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, 2nd ed, …-Driven Demand and Operations Management Models. Kluwer Academic Publishers, Boston. https://doi.org/10.1007/978-1-4614-3597-6
Santos, A.R., Eugenio, F.C., & Louzada, F.L.R. de O., (2010a). ArcGIS 9.3 Total: Aplicação para Dados Espaciais.
Santos, A.R., Machado, T., & Saito, N. (2010b). Spring 5.1.2 passo a passo: aplicações práticas, Alegre, ES: CAUFES.
Santos, A.R., Paterlini, E.M., Fiedler, N.C., Ribeiro, C.A.A.S., Lorenzon, A.S., Domingues, G.F., Marcatti, G.E., de Castro, N.L.M., Teixeira, T.R., dos Santos, G.M.A.D.A., Juvanhol, R.S., Branco, E.R.F., Mota, P.H.S., da Silva, L.G., Pirovani, D.B., de Jesus, W.C., Santos, A.C. de A., Leite, H.G., Iwakiri, S. (2017). Fuzzy logic applied to prospecting for areas for installation of wood panel industries. Journal of Environmental Management, 193, 345–359. https://doi.org/10.1016/j.jenvman.2017.02.049
Santos, A.R. dos, Araújo, E.F., Barros, Q.S., Fernandes, M.M., de Moura Fernandes, M.R., Moreira, T.R., de Souza, K.B., da Silva, E.F., Silva, J.P.M., Santos, J.S., Billo, D., Silva, R.F., Nascimento, G.S.P., da Silva Gandine, S.M., Pinheiro, A.A., Ribeiro, W.R., Gonçalves, M.S., da Silva, S.F., Senhorelo, A.P., Heitor, F.D., Berude, L.C., & de AlmeidaTelles, L.A. (2020). Fuzzy concept applied in determining potential forest fragments for deployment of a network of ecological corridors in the Brazilian Atlantic Forest. Ecol. Indic. 115, 106423. https://doi.org/10.1016/j.ecolind.2020.106423
Santos, H.G. dos (1995). HOCHMÜLLER, D.P., CAVALCANTI, A.C., RÊGO, R.S., KER, J.C., PANOSO, L.A., AMARAL, J.A.M. do. Procedimentos normativos de levantamentos pedológicos. Rio de Janeiro, RJ.
Santos, J. S., Leite, C. C. C., Viana, J. C. C., dos Santos, A. R., Fernandes, M. M., de Souza Abreu, V., ... & de Mendonça, A. R. (2018). Delimitation of ecological corridors in the Brazilian Atlantic Forest. Ecological Indicators, 88, 414-424.
https://doi.org/10.1016/j.ecolind.2018.01.011
Schmidt, M.A.R. (2012). Uso de mapas 3D para navegação virtual: uma acordagem cognitiva. Universidade Federal do Paraná.
Schoennagel, T., Veblen, T.T., & Romme, W.H. (2004). The Interaction of Fire , Fuels , and Climate across Rocky Mountain Forests. Bioscience 54.
Sharma, K.L., Kanga, S., Nathawat, S.M., Sinha, S., & Pandey, C.P. (2012). Fuzzy AHP for forest fire risk modeling. Disaster Prev. Manag. An Int. J. 21, 160–171. https://doi.org/10.1108/09653561211219964
Silva, I., Gomes, D., & Valle, M.E. (2016). Estimativa de Risco e Perigo de Incêndios Florestais Utilizando Subconjuntos Fuzzy , k-NN Fuzzy e Subtractive Clustering.
Silva, S. de A., & Lima, J.S. de S. (2009). Lógica fuzzy no mapeamento de variáveis indicadoras de fertilidade do solo. Idesia 27, 41–46. https://doi.org/10.4067/s0718-34292009000300007
Silvert, W. (2000). Fuzzy indices of environmental conditions. Ecological modelling, 130(1-3), 111-119.
https://doi.org/10.1016/S0304-3800(00)00204-0
Soto, M.E.C. (2012). The identi fi cation and assessment of areas at risk of forest fi re using fuzzy methodology. Applied Geography, 35, 199–207. https://doi.org/10.1016/j.apgeog.2012.07.001
Teixeira, T.R., Soares Ribeiro, C.A.A., Rosa dos Santos, A., Marcatti, G.E., Lorenzon, A.S., de Castro, N.L.M., Domingues, G.F., Leite, H.G., da Costa de Menezes, S.J.M., Santos Mota, P.H., de Almeida Telles, L.A., da Silva Vieira, R. (2018). Forest biomass power plant installation scenarios. Biomass and Bioenergy 108, 35–47. https://doi.org/10.1016/j.biombioe.2017.10.006
Tervonen, T., Sepehr, A., & Kadziński, M. (2015). A multi-criteria inference approach for anti-desertification management. Journal of Environmental Management, 162, 9–19. https://doi.org/10.1016/j.jenvman.2015.07.006
THORNTHWAITE, C.W., & MATHER, J.R. (1955). The water balance, in: Publications in Climatology. Drexel Institute of Technology, Centerton, NJ, p. 104.
Tian, X., Zhao, F., Shu, L., & Wang, M. (2013). Distribution characteristics and the influence factors of forest fires in China. Forest Ecology and Management, 310, 460-467. https://doi.org/https://doi.org/10.1016/j.foreco.2013.08.025
Torres, F.T.P., & MACHADO, P.J.O. (2008). Introdução à Climatologia, Geographic. ed. Geographica, Ubá.
Torres, F.T.P., Ribeiro, G.A., Martins, S.V., & Lima, G.S. (2014). Mapeamento da suscetibilidade a ocorrências de incêndios em vegetação na área urbana de Ubá-MG. Rev. Arvore 38, 811–817. https://doi.org/10.1590/S0100-67622014000500005
Torres, F. T. P., Roque, M. P. B., Lima, G. S., Martins, S. V., & Faria, A. L. L. D. (2017). Mapeamento do risco de incêndios florestais utilizando técnicas de geoprocessamento. Floresta e Ambiente, 24. https://doi.org/10.1590/2179-8087.025615
Triepke, F. J., Brewer, C. K., Leavell, D. M., & Novak, S. J. (2008). Mapping forest alliances and associations using fuzzy systems and nearest neighbor classifiers. Remote Sensing of Environment, 112(3), 1037-1050.
https://doi.org/10.1016/j.rse.2007.07.014
Trigoso, D.I., López, R.S., Briceño, N.B.R., López, J.O.S., Fernández, D.G., Oliva, M., Huatangari, L.Q., Murga, R.E.T., Castillo, E.B., Gurbillón, M.Á.B., 2020. Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds. Agronomy 10, 18. https://doi.org/10.3390/agronomy10121898
Urrutia-Jalabert, R., González, M.E., González-Reyes, Á., Lara, A., & Garreaud, R. (2018). Ecosphere - 2018 - Urrutia‐Jalabert - Climate variability and forest fires in central and south‐central Chile. ECOSPHERE, 9(2), 1–17.
Vadrevu, K. P., Eaturu, A., & Badarinath, K. (2010). Fire risk evaluation using multicriteria analysis—a case study. Environmental monitoring and assessment, 166(1), 223-239. https://doi.org/10.1007/s10661-009-0997-3
Vargas-Sanabria, D., & Campos-Vargas, C. (2018). Sistema multi-algoritmo para la clasificación de coberturas de la tierra en el bosque seco tropical del Área de Conservación Guanacaste, Costa Rica. Rev. Tecnol. en Marcha 31, 58. https://doi.org/10.18845/tm.v31i1.3497
Vieira, G. C., de Mendonça, A. R., da Silva, G. F., Zanetti, S. S., da Silva, M. M., & Dos Santos, A. R. (2018). Prognoses of diameter and height of trees of eucalyptus using artificial intelligence. Science of the Total Environment, 619, 1473-1481. https://doi.org/10.1016/j.scitotenv.2017.11.138
Vilchis-Francés, A.Y., Díaz-Delgado, C., Magaña-Lona, D., Bâ, K.M., & Gómez-Albores, M.Á. (2015). Territorial modeling for danger of wildfires with daily prediction in the Balsas River basin | Modelado espacial para peligro de incendios forestales con predicción diaria en la cuenca del Río Balsas. Agrociencia, 49, 803–820.
Wang, Y., Li, Z., Tang, Z., & Zeng, G. (2011). A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water resources management, 25(13), 3465-3484.
https://doi.org/10.1007/s11269-011-9866-2
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western US forest wildfire activity. science, 313(5789), 940-943.
Zadeh, L.A. (1965). Fuzzy sets. Information Control, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zanella, M. E., Olímpio, J. L., Costa, M. C. L., & Dantas, E. W. C. (2013). Vulnerabilidade socioambiental do baixo curso da bacia hidrográfica do Rio Cocó, Fortaleza-CE. Sociedade & Natureza, 25, 317-332.
.