How to cite this paper
Golab, A., Gooya, E., Falou, A & Cabon, M. (2023). A convolutional neural network for the resource-constrained project scheduling problem (RCPSP): A new approach.Decision Science Letters , 12(2), 225-238.
Refrences
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11).
Agarwal, A., Colak, S., & Erenguc, S. (2011). A Neurogenetic approach for the resource-constrained project scheduling problem. Computers & Operations Research, 38(1), 44–50.
Agarwal, A., Pirkul b, H., & Jacob b, V. S. (2003). Augmented neural networks for task scheduling. European Journal of Operational Research, 151(3), 481–502.
Aggarwal, C. C. (2018). Neural networks and deep learning. springer.
Alcaraz, J., & Concepción, M. (2001). A robust genetic algorithm for resource allocation in project scheduling. Annals of operations Research, 102(1), 83-109.
Aloysius, N., & Geetha, M. (2017). A review on deep convolutional neural networks. 2017 international conference on communication and signal processing (ICCSP) (pp. 0588-0592). IEEE.
Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European journal of operational research, 149(2), 268-281.
Chen, R.-M. (2011). Particle swarm optimization with justification and designed mechanisms for resource-constrained project scheduling problem. Expert Systems with Applications, 38(6), 7102-7111.
Chen, W., Shi, Y.-j., Teng, H.-f., Lan, X.-p., & Hu, L.-c. (2010). An efficient hybrid algorithm for resource-constrained project scheduling. Information Sciences, 180(6), 1031-1039.
Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Campbell, J. P. (2020). introduction to machine learning, neural networks, and deep learning. Translational Vision Science & Technology, 9(2), 14 - 14.
Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: a review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 9(2), 85-112.
Golab, A., Gooya, S. E., Alfalou, A., & Cabon, M. (2022). Rview of conventional metaheuristic techniques for resource-constrained project scheduling problem. Journal of Project Management, 7(2), 95-110. doi:10.5267/j.jpm.2021.10.002
Golab, A., Sedgh Gooya, E., Alfalou, A., & Cabon, M. (2022). A multilayer feed-forward neural network (MLFNN) for the resource-constrained project scheduling problem (RCPSP). Decision Science Letters, 11(4), 407--418. doi:10.5267/j.dsl.2022.7.004
Golab, A., Sedgh Gooya, E., Alfalou, A., & Cabon, M. (2022). Investigating the performance of an artificial neural network for solving the resource constrained project scheduling problem (RCPSP). In Pattern Recognition and Tracking XXXIII. 12101, pp. 78-83. Florida: SPIE. doi:https://doi.org/10.1117/12.2618499
Gonçalves, J. F., Resende, M. G., & Mendes, J. J. (2011). A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem. Journal of Heuristics, 17(5), 467-486.
Hartmann, S. (2002). A self‐adapting genetic algorithm for project scheduling under resource constraints. Naval Research Logistics (NRL), 49(5), 433-448.
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical systems and signal processing, 151.
Kolisch, R. (1996). Efficient priority rules for the resource‐constrained project scheduling problem. Journal of Operations Management, 14(3), 179-192.
Kolisch, R., & Hartmann, S. (1999). heuristic algorithms for solving the resource-constrained project scheduling problem: classification and computational analysis. Project scheduling (pp. 147 - 178). Boston: Springer.
Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174(1), 23-37.
Kolisch, R., Sprecher, A., & Drexl, A. (1995). characterisation and generation of a general class of resource-constrained project scheduling problem. management science, 41(10), 1693 - 1703.
Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem. Information Sciences, 277, 680-693.
Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems, 1-21.
Lim, A., Ma, H., Rodrigues, B., & Tan, S. T. (2013). New meta-heuristics for the resource-constrained project scheduling problem. Flexible Services and Manufacturing Journal, 25(1), 48-73.
Liu, J., Liu, Y., Shi, Y., & Li, J. (2020). Solving Resource-Constrained Project Scheduling Problem via Genetic Algorithm. Journal of Computing in Civil Engineering, 34(2).
Mendes, J. J., Gonçalves, J. F., & Resende, M. G. (2009). A random key based genetic algorithm for the resource constrained project scheduling problem. Computers & Operations Research, 36(1), 92-109.
Mobini, M., Mobini, Z., & Rabbani, M. (2011). An Artificial Immune Algorithm for the project scheduling problem under resource constraints. Applied Soft Computing, 11(2).
Nonobe, K., & Ibaraki, T. (2002). Formulation and tabu search algorithm for the resource constrained project scheduling problem. In Essays and surveys in metaheuristics (pp. 557-588). Boston: Springer.
Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378.
Olaguíbel, R. A., & Goerlich, J. M. (1989). Heuristic algorithms for resource-constrained project scheduling: A review and an empirical analysis. Advances in project scheduling, 113-134.
Özkan, Ö., & Gulçlçek, Ü. (2015). A neural network for resource constrained project scheduling programming. Civil Engineering and Management, 21(2), 193 - 200.
PMI. (2017). A guide to the project management body of knowledge, PMBOK GUIDE Sixth Edition. Chicago: Project management institute.
PMI. (2021). A guide to the project management body of knowledge, PMBOK GUIDE Seventh Edition. Chicago: Project management institute, .
Proon, S., & Jin, M. (2011). A genetic algorithm with neighborhood search for the resource‐constrained project scheduling problem. Naval Research Logistics (NRL), 58(2), 73-82.
Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural computation, 29(9), 2352-2449.
Roy, B., & Sen, A. K. (2019). Meta-heuristic Techniques to Solve Resource-Constrained Project Scheduling Problem. In International conference on innovative computing and communications (pp. 93-99). Springer.
Sagar, S., Sharma, S., & Athaiya, A. (2017). Activation fuctions in neurral networks. towards data science, 6(12), 310-316.
Shou, Y. (2005). A neural network based heuristic for resource-constrained project scheduling. International Symposium on Neural Networks. Berlin, Heidelberg.
Sprecher, A., & Kolisch, R. (1997). PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program. European Journal of Operational Research, 6(1), 205-216.
Svozil, D., Kvasnicka, v., & Pospichal, J. (1997). Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39(1), 43-62.
Ulusoy, G., & Özdamar, L. (1989). Heuristic performance and network/resource characteristics in resource-constrained project scheduling. Journal of the operational research society, 40(12), 1145 - 1152.
Valls, V., Ballestín, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 185(2), 495-508.
Wang, L., & Fang, C. (2012). A hybrid estimation of distribution algorithm for solving the resource-constrained project scheduling problem. Journal of Expert Systems with Applications, 39, 2451-2460.
Wang, S.-C. (2003). Artificial neural network. In Interdisciplinary computing in java programming (pp. 81-100). Boston: springer.
Zamani, R. (2017). An evolutionary implicit enumeration procedure for solving the resource‐constrained project scheduling problem. International Transactions in Operational Research, 24(6), 1525-1547.
Ziarati, K., Akbari, R., & Zeighami, V. (2011). On the performance of bee algorithms for resource-constrained project scheduling problem. Applied Soft Computing, 11(4), 3720–3733.
Agarwal, A., Colak, S., & Erenguc, S. (2011). A Neurogenetic approach for the resource-constrained project scheduling problem. Computers & Operations Research, 38(1), 44–50.
Agarwal, A., Pirkul b, H., & Jacob b, V. S. (2003). Augmented neural networks for task scheduling. European Journal of Operational Research, 151(3), 481–502.
Aggarwal, C. C. (2018). Neural networks and deep learning. springer.
Alcaraz, J., & Concepción, M. (2001). A robust genetic algorithm for resource allocation in project scheduling. Annals of operations Research, 102(1), 83-109.
Aloysius, N., & Geetha, M. (2017). A review on deep convolutional neural networks. 2017 international conference on communication and signal processing (ICCSP) (pp. 0588-0592). IEEE.
Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European journal of operational research, 149(2), 268-281.
Chen, R.-M. (2011). Particle swarm optimization with justification and designed mechanisms for resource-constrained project scheduling problem. Expert Systems with Applications, 38(6), 7102-7111.
Chen, W., Shi, Y.-j., Teng, H.-f., Lan, X.-p., & Hu, L.-c. (2010). An efficient hybrid algorithm for resource-constrained project scheduling. Information Sciences, 180(6), 1031-1039.
Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Campbell, J. P. (2020). introduction to machine learning, neural networks, and deep learning. Translational Vision Science & Technology, 9(2), 14 - 14.
Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: a review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 9(2), 85-112.
Golab, A., Gooya, S. E., Alfalou, A., & Cabon, M. (2022). Rview of conventional metaheuristic techniques for resource-constrained project scheduling problem. Journal of Project Management, 7(2), 95-110. doi:10.5267/j.jpm.2021.10.002
Golab, A., Sedgh Gooya, E., Alfalou, A., & Cabon, M. (2022). A multilayer feed-forward neural network (MLFNN) for the resource-constrained project scheduling problem (RCPSP). Decision Science Letters, 11(4), 407--418. doi:10.5267/j.dsl.2022.7.004
Golab, A., Sedgh Gooya, E., Alfalou, A., & Cabon, M. (2022). Investigating the performance of an artificial neural network for solving the resource constrained project scheduling problem (RCPSP). In Pattern Recognition and Tracking XXXIII. 12101, pp. 78-83. Florida: SPIE. doi:https://doi.org/10.1117/12.2618499
Gonçalves, J. F., Resende, M. G., & Mendes, J. J. (2011). A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem. Journal of Heuristics, 17(5), 467-486.
Hartmann, S. (2002). A self‐adapting genetic algorithm for project scheduling under resource constraints. Naval Research Logistics (NRL), 49(5), 433-448.
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical systems and signal processing, 151.
Kolisch, R. (1996). Efficient priority rules for the resource‐constrained project scheduling problem. Journal of Operations Management, 14(3), 179-192.
Kolisch, R., & Hartmann, S. (1999). heuristic algorithms for solving the resource-constrained project scheduling problem: classification and computational analysis. Project scheduling (pp. 147 - 178). Boston: Springer.
Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174(1), 23-37.
Kolisch, R., Sprecher, A., & Drexl, A. (1995). characterisation and generation of a general class of resource-constrained project scheduling problem. management science, 41(10), 1693 - 1703.
Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem. Information Sciences, 277, 680-693.
Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems, 1-21.
Lim, A., Ma, H., Rodrigues, B., & Tan, S. T. (2013). New meta-heuristics for the resource-constrained project scheduling problem. Flexible Services and Manufacturing Journal, 25(1), 48-73.
Liu, J., Liu, Y., Shi, Y., & Li, J. (2020). Solving Resource-Constrained Project Scheduling Problem via Genetic Algorithm. Journal of Computing in Civil Engineering, 34(2).
Mendes, J. J., Gonçalves, J. F., & Resende, M. G. (2009). A random key based genetic algorithm for the resource constrained project scheduling problem. Computers & Operations Research, 36(1), 92-109.
Mobini, M., Mobini, Z., & Rabbani, M. (2011). An Artificial Immune Algorithm for the project scheduling problem under resource constraints. Applied Soft Computing, 11(2).
Nonobe, K., & Ibaraki, T. (2002). Formulation and tabu search algorithm for the resource constrained project scheduling problem. In Essays and surveys in metaheuristics (pp. 557-588). Boston: Springer.
Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378.
Olaguíbel, R. A., & Goerlich, J. M. (1989). Heuristic algorithms for resource-constrained project scheduling: A review and an empirical analysis. Advances in project scheduling, 113-134.
Özkan, Ö., & Gulçlçek, Ü. (2015). A neural network for resource constrained project scheduling programming. Civil Engineering and Management, 21(2), 193 - 200.
PMI. (2017). A guide to the project management body of knowledge, PMBOK GUIDE Sixth Edition. Chicago: Project management institute.
PMI. (2021). A guide to the project management body of knowledge, PMBOK GUIDE Seventh Edition. Chicago: Project management institute, .
Proon, S., & Jin, M. (2011). A genetic algorithm with neighborhood search for the resource‐constrained project scheduling problem. Naval Research Logistics (NRL), 58(2), 73-82.
Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural computation, 29(9), 2352-2449.
Roy, B., & Sen, A. K. (2019). Meta-heuristic Techniques to Solve Resource-Constrained Project Scheduling Problem. In International conference on innovative computing and communications (pp. 93-99). Springer.
Sagar, S., Sharma, S., & Athaiya, A. (2017). Activation fuctions in neurral networks. towards data science, 6(12), 310-316.
Shou, Y. (2005). A neural network based heuristic for resource-constrained project scheduling. International Symposium on Neural Networks. Berlin, Heidelberg.
Sprecher, A., & Kolisch, R. (1997). PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program. European Journal of Operational Research, 6(1), 205-216.
Svozil, D., Kvasnicka, v., & Pospichal, J. (1997). Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39(1), 43-62.
Ulusoy, G., & Özdamar, L. (1989). Heuristic performance and network/resource characteristics in resource-constrained project scheduling. Journal of the operational research society, 40(12), 1145 - 1152.
Valls, V., Ballestín, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 185(2), 495-508.
Wang, L., & Fang, C. (2012). A hybrid estimation of distribution algorithm for solving the resource-constrained project scheduling problem. Journal of Expert Systems with Applications, 39, 2451-2460.
Wang, S.-C. (2003). Artificial neural network. In Interdisciplinary computing in java programming (pp. 81-100). Boston: springer.
Zamani, R. (2017). An evolutionary implicit enumeration procedure for solving the resource‐constrained project scheduling problem. International Transactions in Operational Research, 24(6), 1525-1547.
Ziarati, K., Akbari, R., & Zeighami, V. (2011). On the performance of bee algorithms for resource-constrained project scheduling problem. Applied Soft Computing, 11(4), 3720–3733.