How to cite this paper
Purusotham, S., Jayanth, T., Vimala, T & Ghanshyam, K. (2022). An efficient hybrid genetic algorithm for solving truncated travelling salesman problem.Decision Science Letters , 11(4), 473-484.
Refrences
Adasme, P., & Dehghan Firoozabadi, A. (2020). Degree-Constrained-Minimum Spanning Tree Problem. Complexity, 2020.
Adasme, P., Soto, I., & Seguel, F. (2018, August). Finding degree constrained k-cardinality minimum spanning trees for wireless sensor networks. In International Conference on Mobile Web and Intelligent Information Systems (pp. 51-62). Springer, Cham.
Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006). The traveling salesman problem: a computational study. Princeton university press.
Bahaabadi, M.R., Mohaymany, A.S., Babaei, M.: An Efficient crossover operator for travelling salesman problem. International Journal of Optimization in Civil Engineering 2(4), 607–619 (2012).
Baniasadi, P., Foumani, M., Smith-Miles, K., & Ejov, V. (2020). A transformation technique for the clustered generalized traveling salesman problem with applications to logistics. European Journal of Operational Research, 285(2), 444-457.
Bhavani, V., & Murthy, M. S. (2006). Truncated M-travelling salesmen problem. Opsearch, 43(2), 152-177.
Dasari, K. V., Pandiri, V., & Singh, A. (2021). Multi-start heuristics for the profitable tour problem. Swarm and Evolutionary Computation, 64, 100897.
Demir, E., Huckle, K., Syntetos, A., Lahy, A., & Wilson, M. (2019). Vehicle routing problem: Past and future. In Contemporary operations and logistics (pp. 97-117). Palgrave Macmillan, Cham.
Elgesem, A. S., Skogen, E. S., Wang, X., & Fagerholt, K. (2018). A traveling salesman problem with pickups and deliveries and stochastic travel times: An application from chemical shipping. European Journal of Operational Research, 269(3), 844-859.
Fatthi, W. N. A. W. A., Haris, M. H. M., & Kahtan, H. (2018, October). Application of travelling salesman problem for minimizing travel distance of a two-day trip in Kuala Lumpur via Go KL city bus. In International Conference on Intelligent Computing & Optimization (pp. 277-284). Springer, Cham.
Gensch, D. H. (1978). An industrial application of the traveling salesman's subtour problem. Aiie Transactions, 10(4), 362-370.
Giardini, G., & Kalmár-Nagy, T. (2011). Genetic algorithm for combinatorial path planning: the subtour problem. Mathematical Problems in Engineering, 2011.
Goldenberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Newyork.
Ha, Q. M., Deville, Y., Pham, Q. D., & Hà, M. H. (2020). A hybrid genetic algorithm for the traveling salesman problem with drone. Journal of Heuristics, 26(2), 219-247.
Hariyadi, P. M., Nguyen, P. T., Iswanto, I., & Sudrajat, D. (2020). Traveling salesman problem solution using genetic algorithm. Journal of Critical Reviews, 7(1), 56-61.
Hussain, A., Muhammad, Y. S., Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A., & Gani, S. (2017). Genetic algorithm for traveling salesman problem with modified cycle crossover operator. Computational intelligence and neuroscience, 2017.
Ibaraki, T. (1973). Algorithms for obtaining shortest paths visiting specified nodes. Siam Review, 15(2), 309-317.
Khan, F. H., Khan, N., Inayatullah, S., & Nizami, S. T. (2009). Solving TSP problem by using genetic algorithm. International Journal of Basic & Applied Sciences, 9(10), 79-88.
Kumar Thenepalle, J., & Singamsetty, P. (2018). Bi-criteria travelling salesman subtour problem with time threshold. The European Physical Journal Plus, 133(3), 1-15.
Kumar, T. J., & Purusotham, S. (2017, November). An exact algorithm for k-cardinality degree constrained clustered minimum spanning tree problem. In IOP Conference Series: Materials Science and Engineering (Vol. 263, No. 4, p. 042112). IOP Publishing.
Laporte, G., Mercure, H., & Norbert, Y. (1984). Optimal tour planning with specified nodes. RAIRO-Operations Research-Recherche Opérationnelle, 18(3), 203-210.
Larranaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artificial Intelligence Review, 13(2), 129-170.
Liu, C., & Kroll, A. (2016). Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems. SpringerPlus, 5(1), 1361.
Madani, A., Batta, R., & Karwan, M. (2021). The balancing traveling salesman problem: application to warehouse order picking. Top, 29(2), 442-469.
Mittenthal, J., & Noon, C. E. (1992). An insert/delete heuristic for the travelling salesman subset-tour problem with one additional constraint. Journal of the Operational Research Society, 43(3), 277-283.
Palhares, R. A., & Araújo, M. C. B. (2018, December). Vehicle routing: application of travelling salesman problem in a dairy. In 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1421-1425). IEEE.
Pandiri, V., & Singh, A. (2020). Two multi-start heuristics for the k-traveling salesman problem. OPSEARCH, 57(4), 1164-1204.
Prakash, A., Balakrishna, U., & Thenepalle, J. (2022). An exact algorithm for constrained k-cardinality unbalanced assignment problem. International Journal of Industrial Engineering Computations, 13(2), 267-276.
Riazi, A. (2019). Genetic algorithm and a double-chromosome implementation to the traveling salesman problem. SN Applied Sciences, 1(11), 1397.
Saksena, J. P., & Kumar, S. (1966). The routing problem with “K” specified nodes. Operations Research, 14(5), 909-913.
Sharma, S., & Jain, V. (2021, April). A Novel Approach for Solving TSP Problem Using Genetic Algorithm Problem. In IOP Conference Series: Materials Science and Engineering (Vol. 1116, No. 1, p. 012194). IOP Publishing.
Singamsetty, P., & Thenepalle, J. (2021). Designing optimal route for the distribution chain of a rural LPG delivery system. International Journal of Industrial Engineering Computations, 12(2), 221-234.
Singamsetty, P., Thenepalle, J., & Uruturu, B. (2021). Solving open travelling salesman subset-tour problem through a hybrid genetic algorithm. Journal of Project Management, 6(4), 209-222.
Singh, R. K., Panchal, V. K., & Singh, B. K. (2018, August). A review on genetic algorithm and its applications. In 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT) (pp. 376-380). IEEE.
Stanley, H. E., & Buldyrev, S. V., (2001). Statistical physics: The salesman and the tourist. Nature, 413 (6854), 373+.
Stetsyuk, P. I. (2016). Problem statements for k-node shortest path and k-node shortest cycle in a complete graph. Cybernetics and Systems Analysis, 52(1), 71-75.
Stodola, P., Otřísal, P., & Hasilová, K. (2022). Adaptive ant Colony optimization with node clustering applied to the travelling salesman problem. Swarm and Evolutionary Computation, 70, 101056.
Venkatesh, P., Srivastava, G., & Singh, A. (2018). A general variable neighborhood search algorithm for the k-traveling salesman problem. Procedia computer science, 143, 189-196.
Verweij, B., & Aardal, K. (2003). The merchant subtour problem. Mathematical programming, 94(2-3), 295-322.
Westerlund, A., Göthe-Lundgren, M., & Larsson, T. (2006). A stabilized column generation scheme for the traveling salesman subtour problem. Discrete Applied Mathematics, 154(15), 2212-2238.
Xu, H., Li, Q., Wang, J., Luo, G., Zhu, C., & Sun, W. (2018). An optimization routing algorithm for green communication in underground mines. Sensors, 18(6), 1950.
Adasme, P., Soto, I., & Seguel, F. (2018, August). Finding degree constrained k-cardinality minimum spanning trees for wireless sensor networks. In International Conference on Mobile Web and Intelligent Information Systems (pp. 51-62). Springer, Cham.
Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006). The traveling salesman problem: a computational study. Princeton university press.
Bahaabadi, M.R., Mohaymany, A.S., Babaei, M.: An Efficient crossover operator for travelling salesman problem. International Journal of Optimization in Civil Engineering 2(4), 607–619 (2012).
Baniasadi, P., Foumani, M., Smith-Miles, K., & Ejov, V. (2020). A transformation technique for the clustered generalized traveling salesman problem with applications to logistics. European Journal of Operational Research, 285(2), 444-457.
Bhavani, V., & Murthy, M. S. (2006). Truncated M-travelling salesmen problem. Opsearch, 43(2), 152-177.
Dasari, K. V., Pandiri, V., & Singh, A. (2021). Multi-start heuristics for the profitable tour problem. Swarm and Evolutionary Computation, 64, 100897.
Demir, E., Huckle, K., Syntetos, A., Lahy, A., & Wilson, M. (2019). Vehicle routing problem: Past and future. In Contemporary operations and logistics (pp. 97-117). Palgrave Macmillan, Cham.
Elgesem, A. S., Skogen, E. S., Wang, X., & Fagerholt, K. (2018). A traveling salesman problem with pickups and deliveries and stochastic travel times: An application from chemical shipping. European Journal of Operational Research, 269(3), 844-859.
Fatthi, W. N. A. W. A., Haris, M. H. M., & Kahtan, H. (2018, October). Application of travelling salesman problem for minimizing travel distance of a two-day trip in Kuala Lumpur via Go KL city bus. In International Conference on Intelligent Computing & Optimization (pp. 277-284). Springer, Cham.
Gensch, D. H. (1978). An industrial application of the traveling salesman's subtour problem. Aiie Transactions, 10(4), 362-370.
Giardini, G., & Kalmár-Nagy, T. (2011). Genetic algorithm for combinatorial path planning: the subtour problem. Mathematical Problems in Engineering, 2011.
Goldenberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Newyork.
Ha, Q. M., Deville, Y., Pham, Q. D., & Hà, M. H. (2020). A hybrid genetic algorithm for the traveling salesman problem with drone. Journal of Heuristics, 26(2), 219-247.
Hariyadi, P. M., Nguyen, P. T., Iswanto, I., & Sudrajat, D. (2020). Traveling salesman problem solution using genetic algorithm. Journal of Critical Reviews, 7(1), 56-61.
Hussain, A., Muhammad, Y. S., Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A., & Gani, S. (2017). Genetic algorithm for traveling salesman problem with modified cycle crossover operator. Computational intelligence and neuroscience, 2017.
Ibaraki, T. (1973). Algorithms for obtaining shortest paths visiting specified nodes. Siam Review, 15(2), 309-317.
Khan, F. H., Khan, N., Inayatullah, S., & Nizami, S. T. (2009). Solving TSP problem by using genetic algorithm. International Journal of Basic & Applied Sciences, 9(10), 79-88.
Kumar Thenepalle, J., & Singamsetty, P. (2018). Bi-criteria travelling salesman subtour problem with time threshold. The European Physical Journal Plus, 133(3), 1-15.
Kumar, T. J., & Purusotham, S. (2017, November). An exact algorithm for k-cardinality degree constrained clustered minimum spanning tree problem. In IOP Conference Series: Materials Science and Engineering (Vol. 263, No. 4, p. 042112). IOP Publishing.
Laporte, G., Mercure, H., & Norbert, Y. (1984). Optimal tour planning with specified nodes. RAIRO-Operations Research-Recherche Opérationnelle, 18(3), 203-210.
Larranaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artificial Intelligence Review, 13(2), 129-170.
Liu, C., & Kroll, A. (2016). Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems. SpringerPlus, 5(1), 1361.
Madani, A., Batta, R., & Karwan, M. (2021). The balancing traveling salesman problem: application to warehouse order picking. Top, 29(2), 442-469.
Mittenthal, J., & Noon, C. E. (1992). An insert/delete heuristic for the travelling salesman subset-tour problem with one additional constraint. Journal of the Operational Research Society, 43(3), 277-283.
Palhares, R. A., & Araújo, M. C. B. (2018, December). Vehicle routing: application of travelling salesman problem in a dairy. In 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1421-1425). IEEE.
Pandiri, V., & Singh, A. (2020). Two multi-start heuristics for the k-traveling salesman problem. OPSEARCH, 57(4), 1164-1204.
Prakash, A., Balakrishna, U., & Thenepalle, J. (2022). An exact algorithm for constrained k-cardinality unbalanced assignment problem. International Journal of Industrial Engineering Computations, 13(2), 267-276.
Riazi, A. (2019). Genetic algorithm and a double-chromosome implementation to the traveling salesman problem. SN Applied Sciences, 1(11), 1397.
Saksena, J. P., & Kumar, S. (1966). The routing problem with “K” specified nodes. Operations Research, 14(5), 909-913.
Sharma, S., & Jain, V. (2021, April). A Novel Approach for Solving TSP Problem Using Genetic Algorithm Problem. In IOP Conference Series: Materials Science and Engineering (Vol. 1116, No. 1, p. 012194). IOP Publishing.
Singamsetty, P., & Thenepalle, J. (2021). Designing optimal route for the distribution chain of a rural LPG delivery system. International Journal of Industrial Engineering Computations, 12(2), 221-234.
Singamsetty, P., Thenepalle, J., & Uruturu, B. (2021). Solving open travelling salesman subset-tour problem through a hybrid genetic algorithm. Journal of Project Management, 6(4), 209-222.
Singh, R. K., Panchal, V. K., & Singh, B. K. (2018, August). A review on genetic algorithm and its applications. In 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT) (pp. 376-380). IEEE.
Stanley, H. E., & Buldyrev, S. V., (2001). Statistical physics: The salesman and the tourist. Nature, 413 (6854), 373+.
Stetsyuk, P. I. (2016). Problem statements for k-node shortest path and k-node shortest cycle in a complete graph. Cybernetics and Systems Analysis, 52(1), 71-75.
Stodola, P., Otřísal, P., & Hasilová, K. (2022). Adaptive ant Colony optimization with node clustering applied to the travelling salesman problem. Swarm and Evolutionary Computation, 70, 101056.
Venkatesh, P., Srivastava, G., & Singh, A. (2018). A general variable neighborhood search algorithm for the k-traveling salesman problem. Procedia computer science, 143, 189-196.
Verweij, B., & Aardal, K. (2003). The merchant subtour problem. Mathematical programming, 94(2-3), 295-322.
Westerlund, A., Göthe-Lundgren, M., & Larsson, T. (2006). A stabilized column generation scheme for the traveling salesman subtour problem. Discrete Applied Mathematics, 154(15), 2212-2238.
Xu, H., Li, Q., Wang, J., Luo, G., Zhu, C., & Sun, W. (2018). An optimization routing algorithm for green communication in underground mines. Sensors, 18(6), 1950.