How to cite this paper
Purwandari, T., Zahroh, S., Hidayat, Y., Sukonob, S., Mamat, M & Saputra, J. (2022). Forecasting model of COVID-19 pandemic in Malaysia: An application of time series approach using neural network.Decision Science Letters , 11(1), 35-42.
Refrences
Arumugam, T. (2020). MCO-linked domestic violence rises. New Straits Times. https://www.nst.com.my/news/exclusive/2020/04/581233/mco-linkeddomestic-violence-rises
CDC. (2019). How COVID-19 Spreads. Centers for Disease Control and Prevention. http://cdc.gov/2019-ncov/symptoms-testing/symptoms.html
Dalton, C. B., Corbett, S. J., & Katelaris, A. L. (2020). Pre-emptive low-cost social distancing and enhanced hygiene implemented before local COVID-19 transmission could decrease the number and severity of cases. The Medical Journal of Australia 212(10), 1-10. https://www.mja.com.au/journal/2020/pre-emptive-low-cost-social-distancing-and-enhanced-hygiene-implemented-local-covid-19
Du, K. L., & Swamy, M. N. S. (2013). Neural Network and Statistical Learning. Concordia University/ Montreal.
Fausset, L. (1994). Fundamental of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall/ New York.
FMT. (2020). Social distancing: How to do it right. Free Malaysia Today. https://www.freemalaysiatoday.com/c ategory/leisure/2020/03/26/socialdistancing-how-to-do-it-right/
Foo, L. P., Chin, M. Y., Tan, K. L., & Phuah, K. T. (2020). The impact of COVID-19 on tourism industry in Malaysia. Current Issues in Tourism, 1-5. https://doi.org/10.1080/13683500.2020.1777951
Haque, A., Karim, W., Kabir, S. M. H., & Tarofder, A. K. (2020). Understanding Social Distancing Intention among University Students during Covid-19 Outbreak: An Application of Protection Motivation Theory. TEST Engineering and Management 83(5), 16360-16377. http://irep.iium.edu.my/90965/
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. IEEE International Joint Conference on Neural Networks 2, 25-29. https://doi.org/ 10.1109/IJCNN.2004.1380068
Huang, N. E., Qiao, F., & Tung, K. (2020). A data-driven model for predicting the course of COVID-19 epidemic with applications for China, Korea, Italy, Germany, Spain, UK, and USA. medRxiv (preprint). https://doi.org/10.1101/2020.03.28.20046177
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts/ Melbourne.
Khoo, L. S., Hasmi, A. H., Ibrahim, M. A., & Mahmood, M. S. (2020). Management of the dead during COVID-19 outbreak in Malaysia. Forensic Science, Medicine, and Pathology (June 9), 1-8. https://doi.org/10.1007/s12024-020-00269-6.
Liang, N., & Huang, G. (2006). A fast and accurate online sequential learning algorithm for a feed-forward network. IEEE Trans Neural Network 17(6), 1411-1423. https://doi.org/10.1109/TNN.2006.880583
Mahase E. (2020). Covid-19: UK starts social distancing after new model points to 260 000 potential deaths. BMJ (Clinical research ed.), 368, m1089. https://doi.org/10.1136/bmj.m1089
McCulloch, W. S., & Pits, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115-133. https://doi.org/10.1007/BF02478259
Moriyama, M., Walter, J. H., & Akiko, I. (2020). Seasonality of Respiratory Viral Infections. Annual Reviews of Virology 7, 83-101. https://doi.org/10.1146/annurev-virology-012420-022445
Plummer, E. A. (2000). Time Series Forecasting with Feed-Forward Neural Networks: Guidelines And Limitations. [Thesis]. Department of Computer Science and The Graduate School of The University of Wyoming.
PMO. (2020). 2020 economic stimulus package – PRIHATIN. Prime Minister's Office. https://www.pmo.gov.my/2020/03/pakejrangsangan-ekonomi-prihatin-rakyat-prihatin/.
Pontoh R. S., Toharudin, T., Zahroh, S., & Supartini, E. (2020a). Effectiveness of the Public Health Measures to Mention the Spread of COVID-19. Communication and Mathematical Biology and Neuroscience, 31. https://doi.org/10.28919/cmbn/4711
Pontoh, R. S., Zahroh, S., Hidayat, Y., Aldella, R., & Jiwani, N. M. (2020b). Covid-19 modelling in South Korea using a time series approach. International Journal of Advanced Science Technology 29(7), 1620-1632. https://sersc.org/journals/index.php/IJAST/article/view/16246
Pontoh, R. S., Zahroh, S., Akbar, A. A., Jiwani, N. M., & Sunengsih, N. (2021a). Children Mental Health in Bandung During Covid-19 Pandemic: A Cross-Sectional Study. Communication and Mathematical Biology and Neuroscience, 31. https://doi.org/10.28919/cmbn/5631
Pontoh, R. S., Zahroh, S., & Sunengsih, N. (2021b). New Normal Policy on the Rupiah Exchange Rate Using Long Short Term Memory. Journal of Physics: Conference Series 1863(2021), 012063. https://doi.org/ 10.1088/1742-6596/1863/1/012063
Rettner, R. (2020). Up to 25% of People with COVID-19 may not Show Symptoms. Livescience. https://www.livescience.com/coronavirus-asymptomatic-spread.html
Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan/ Washington D.C.
Toharudin, T., Pontoh, R. S., Caraka, R.E., Zahroh, S., Kendogo, P., Sijabat, N., Sari, M.D.P., Gio, P.U., Basyuni, M., & Pardamean, B. (2021). National Vaccination and Local Intervention Impacts on COVID-19 Cases. Sustainability 13, 8282. https://doi.org/10.3390/su13158282
Toharudin, T., Pontoh, R. S., Caraka, R. E., Zahroh, S., Youngjo L., & Chen, R. C. (2021). Employing long short-term memory and Facebook prophet model in air temperature forecasting. Communications in Statistics – Simulation and Computation, 1-12. https://doi.org/10.1080/03610918.2020.1854302
Wang, S. J., Chen, H. L., Yan, W. J., Chen, Y. H., & Fu, X. (2014). Face recognition and micro-expression recognition based on discriminant tensor subspace analysis plus extreme learning machine. Neural Processing Letters 39(1), 25-43. https://doi.org/10.1007/s11063-013-9288-7
WHO. (2020). Situation Report-77: Coronavirus disease 2019 (COVID-19). World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
Worldometer. (2020). COVID-19 Coronavirus Pandemic. Worldometer. http://worldometers.info/coronavirus.
Xiao, D., Li, B., & Mao, Y. (2017). A multiple hidden layers extreme learning machine method and its application. Hindawi Mathematical Problems in Engineering 2017, 1-11. https://doi.org/10.1155/2017/4670187
CDC. (2019). How COVID-19 Spreads. Centers for Disease Control and Prevention. http://cdc.gov/2019-ncov/symptoms-testing/symptoms.html
Dalton, C. B., Corbett, S. J., & Katelaris, A. L. (2020). Pre-emptive low-cost social distancing and enhanced hygiene implemented before local COVID-19 transmission could decrease the number and severity of cases. The Medical Journal of Australia 212(10), 1-10. https://www.mja.com.au/journal/2020/pre-emptive-low-cost-social-distancing-and-enhanced-hygiene-implemented-local-covid-19
Du, K. L., & Swamy, M. N. S. (2013). Neural Network and Statistical Learning. Concordia University/ Montreal.
Fausset, L. (1994). Fundamental of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall/ New York.
FMT. (2020). Social distancing: How to do it right. Free Malaysia Today. https://www.freemalaysiatoday.com/c ategory/leisure/2020/03/26/socialdistancing-how-to-do-it-right/
Foo, L. P., Chin, M. Y., Tan, K. L., & Phuah, K. T. (2020). The impact of COVID-19 on tourism industry in Malaysia. Current Issues in Tourism, 1-5. https://doi.org/10.1080/13683500.2020.1777951
Haque, A., Karim, W., Kabir, S. M. H., & Tarofder, A. K. (2020). Understanding Social Distancing Intention among University Students during Covid-19 Outbreak: An Application of Protection Motivation Theory. TEST Engineering and Management 83(5), 16360-16377. http://irep.iium.edu.my/90965/
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. IEEE International Joint Conference on Neural Networks 2, 25-29. https://doi.org/ 10.1109/IJCNN.2004.1380068
Huang, N. E., Qiao, F., & Tung, K. (2020). A data-driven model for predicting the course of COVID-19 epidemic with applications for China, Korea, Italy, Germany, Spain, UK, and USA. medRxiv (preprint). https://doi.org/10.1101/2020.03.28.20046177
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts/ Melbourne.
Khoo, L. S., Hasmi, A. H., Ibrahim, M. A., & Mahmood, M. S. (2020). Management of the dead during COVID-19 outbreak in Malaysia. Forensic Science, Medicine, and Pathology (June 9), 1-8. https://doi.org/10.1007/s12024-020-00269-6.
Liang, N., & Huang, G. (2006). A fast and accurate online sequential learning algorithm for a feed-forward network. IEEE Trans Neural Network 17(6), 1411-1423. https://doi.org/10.1109/TNN.2006.880583
Mahase E. (2020). Covid-19: UK starts social distancing after new model points to 260 000 potential deaths. BMJ (Clinical research ed.), 368, m1089. https://doi.org/10.1136/bmj.m1089
McCulloch, W. S., & Pits, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115-133. https://doi.org/10.1007/BF02478259
Moriyama, M., Walter, J. H., & Akiko, I. (2020). Seasonality of Respiratory Viral Infections. Annual Reviews of Virology 7, 83-101. https://doi.org/10.1146/annurev-virology-012420-022445
Plummer, E. A. (2000). Time Series Forecasting with Feed-Forward Neural Networks: Guidelines And Limitations. [Thesis]. Department of Computer Science and The Graduate School of The University of Wyoming.
PMO. (2020). 2020 economic stimulus package – PRIHATIN. Prime Minister's Office. https://www.pmo.gov.my/2020/03/pakejrangsangan-ekonomi-prihatin-rakyat-prihatin/.
Pontoh R. S., Toharudin, T., Zahroh, S., & Supartini, E. (2020a). Effectiveness of the Public Health Measures to Mention the Spread of COVID-19. Communication and Mathematical Biology and Neuroscience, 31. https://doi.org/10.28919/cmbn/4711
Pontoh, R. S., Zahroh, S., Hidayat, Y., Aldella, R., & Jiwani, N. M. (2020b). Covid-19 modelling in South Korea using a time series approach. International Journal of Advanced Science Technology 29(7), 1620-1632. https://sersc.org/journals/index.php/IJAST/article/view/16246
Pontoh, R. S., Zahroh, S., Akbar, A. A., Jiwani, N. M., & Sunengsih, N. (2021a). Children Mental Health in Bandung During Covid-19 Pandemic: A Cross-Sectional Study. Communication and Mathematical Biology and Neuroscience, 31. https://doi.org/10.28919/cmbn/5631
Pontoh, R. S., Zahroh, S., & Sunengsih, N. (2021b). New Normal Policy on the Rupiah Exchange Rate Using Long Short Term Memory. Journal of Physics: Conference Series 1863(2021), 012063. https://doi.org/ 10.1088/1742-6596/1863/1/012063
Rettner, R. (2020). Up to 25% of People with COVID-19 may not Show Symptoms. Livescience. https://www.livescience.com/coronavirus-asymptomatic-spread.html
Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan/ Washington D.C.
Toharudin, T., Pontoh, R. S., Caraka, R.E., Zahroh, S., Kendogo, P., Sijabat, N., Sari, M.D.P., Gio, P.U., Basyuni, M., & Pardamean, B. (2021). National Vaccination and Local Intervention Impacts on COVID-19 Cases. Sustainability 13, 8282. https://doi.org/10.3390/su13158282
Toharudin, T., Pontoh, R. S., Caraka, R. E., Zahroh, S., Youngjo L., & Chen, R. C. (2021). Employing long short-term memory and Facebook prophet model in air temperature forecasting. Communications in Statistics – Simulation and Computation, 1-12. https://doi.org/10.1080/03610918.2020.1854302
Wang, S. J., Chen, H. L., Yan, W. J., Chen, Y. H., & Fu, X. (2014). Face recognition and micro-expression recognition based on discriminant tensor subspace analysis plus extreme learning machine. Neural Processing Letters 39(1), 25-43. https://doi.org/10.1007/s11063-013-9288-7
WHO. (2020). Situation Report-77: Coronavirus disease 2019 (COVID-19). World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
Worldometer. (2020). COVID-19 Coronavirus Pandemic. Worldometer. http://worldometers.info/coronavirus.
Xiao, D., Li, B., & Mao, Y. (2017). A multiple hidden layers extreme learning machine method and its application. Hindawi Mathematical Problems in Engineering 2017, 1-11. https://doi.org/10.1155/2017/4670187