How to cite this paper
Afif, M., Ghareb, A., Saif, A., Bakar, A & Bazighifan, O. (2020). Genetic algorithm rule based categorization method for textual data mining.Decision Science Letters , 9(1), 37-50.
Refrences
Abbas, M., Smaili, K. & Berkani, D. (2011). Evaluation of topic identification methods on Arabic corpora. Journal of Digital Information Management, 9(5), 185-192.
Abu Tair, M. M. & Baraka, R. S. (2013). Design and evaluation of a parallel classifier for large-scale Arabic text. International Journal of Computer Applications, 75(3), 13-20.
Al-diabat, M. (2012). Arabic text categorization using classification rule mining. Applied Mathematical Sciences, 6(81), 4033-4046.
Al-Radaideh, Q. A., Al-Shawakfa, E. M., Ghareb, A. S. & Abu-Salem, H. (2011). An approach for Arabic text categorization using association rule mining. International Journal of Computer Processing Of Languages, 23(1), 81-106.
Al-Saleem, S. (2011). Automated Arabic text categorization using SVM and NB. International Arab Journal of e-Technology, 2(2), 124-128.
Al-Zaghoul, F. & Al-Dhaheri, S. (2013). Arabic text classification based on features reduction using artificial neural networks. Proceedings of 15th International Conference on Computer Modelling and Simulation (UKSim), pp. 485-490.
Azam, N. & Yao, J. (2012). Comparison of term frequency and document frequency based feature selection metrics in text categorization. Expert Systems with Applications, 39, 4760–4768.
Bawaneh, M. J., Alkoffash, M. S. & Al Rabea, A. (2008). Arabic text classification using K-NN and Naive Bayes. Journal of Computer Science, 4(7), 600-605.
Chantar, H. K. & Corne, D. W. (2011). Feature subset selection for Arabic document categorization using BPSO-KNN. Proceedings of the 3rd World Congress on Nature and Biologically Inspired Computing (NaBIC), 546-551.
Chen, J., Huang, H., Tian, S. & Qu, Y. (2009). Feature selection for text classification with Naïve Bayes. Expert Systems with Applications, 36(3), 5432-5435.
El-Halees, A. (2008). A comparative study on Arabic text classification. Egyptian Computer Science Journal, 20(2).
Fang, Y., Chen, K. & Luo, C. (2012). The algorithm research of genetic algorithm combining with text feature selection method. Journal of Computational Science and Engineering, 1(1), 9-13.
Ghareb, S. A. & Hamdan, A.R. & Bakar, A.A. (2016). Hybrid Feature Selection based on Enhanced Genetic Algorithm for Text Categorization. Expert System with Applications, 49, 31-47.
Gharib, T. F., Habib, M. B. & Fayed, Z. T. (2009). Arabic text classification using support vector machines. International Journal of Computers and Their Applications, 16(4), 192-199.
Günal, S. (2012). Hybrid feature selection for text classification. Turkish Journal of Electrical Engineering & Computer Sciences, 20(Sup. 2), 1296-1311.
Harrag, F. & Al-Qawasmah, E. (2010). Improving Arabic text categorization using Neural Network with SVD. Journal of Digital Information Management (JDIM), 8(2), 125-135.
Hattab, A. M., & Hussein, A. K. (2012). Arabic content classification system using statistical Bayes classifier with words detection and correction. World of Computer Science and Information Technology Journal, 2(6), 193-196.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan press.
Khorsheed, M. S. & Al-Thubaity, A. O. (2013). Comparative evaluation of text classification techniques using a large diverse Arabic dataset. Language Resources and Evaluation, 47(2), 513-538.
Mesleh, A. (2011). Feature sub-set selection metrics for Arabic text classification. Pattern Recognition Letters, 32(14), 1922-1929.
Mladenic, D. & Grobelnik, M. (1999). Feature selection for unbalanced class distribution and naive bayes. Proceedings of the 16th International Conference on Machine Learning (ICML), pp. 258-267.
Salton, G. & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5), 513-523.
Tan, F., Fu, X., Zhang, Y. & Bourgeois, A. G. (2008). A genetic algorithm-based method for feature subset selection. Soft Computing, 12(2), 111-120.
Thabtah, F. (2007). A review of associative classification mining. The Knowledge Engineering Review, 22(01), 37-65.
Thabtah, F., Gharaibeh, O. & Abdeljaber, H. (2011). Comparison of rule based classification techniques for the Arabic textual data. Proceedings of the 4th International Symposium on Innovation in Information and Communication Technology (ISIICT), IEEE, pp. 105-111.
Thabtah, F., Gharaibeh, O. & Al-Zubaidy, R. (2012). Arabic text mining using rule based classification. Journal of Information and Knowledge Management, 11(1), 1250006-1-1250006-10.
Tsai, C-F., Chen, Z-Y. & Ke, S-W. (2014). Evolutionary instance selection for text classification. Journal of Systems and Software, 90, 104-113.
Uğuz, H. (2011). A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm. Knowledge-Based Systems, 24(7), 1024-1032.
Uysal, A. K. & Gunal, S. (2014). Text classification using genetic algorithm oriented latent semantic features. Expert Systems with Applications, 41(13), 5938-5947.