Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Decision Science Letters » A novel hybrid backtracking search optimization algorithm for continuous function optimization

Journals

  • IJIEC (697)
  • MSL (2637)
  • DSL (631)
  • CCL (482)
  • USCM (1092)
  • ESM (398)
  • AC (547)
  • JPM (228)
  • IJDS (809)
  • JFS (81)

DSL Volumes

    • Volume 1 (10)
      • Issue 1 (5)
      • Issue 2 (5)
    • Volume 2 (30)
      • Issue 1 (5)
      • Issue 2 (6)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 3 (53)
      • Issue 1 (15)
      • Issue 2 (10)
      • Issue 3 (19)
      • Issue 4 (9)
    • Volume 4 (48)
      • Issue 1 (10)
      • Issue 2 (12)
      • Issue 3 (14)
      • Issue 4 (12)
    • Volume 5 (39)
      • Issue 1 (12)
      • Issue 2 (10)
      • Issue 3 (8)
      • Issue 4 (9)
    • Volume 6 (30)
      • Issue 1 (8)
      • Issue 2 (6)
      • Issue 3 (9)
      • Issue 4 (7)
    • Volume 7 (41)
      • Issue 1 (8)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (17)
    • Volume 8 (38)
      • Issue 1 (8)
      • Issue 2 (6)
      • Issue 3 (14)
      • Issue 4 (10)
    • Volume 9 (39)
      • Issue 1 (8)
      • Issue 2 (9)
      • Issue 3 (14)
      • Issue 4 (8)
    • Volume 10 (43)
      • Issue 1 (7)
      • Issue 2 (8)
      • Issue 3 (20)
      • Issue 4 (8)
    • Volume 11 (49)
      • Issue 1 (9)
      • Issue 2 (9)
      • Issue 3 (14)
      • Issue 4 (17)
    • Volume 12 (64)
      • Issue 1 (12)
      • Issue 2 (24)
      • Issue 3 (13)
      • Issue 4 (15)
    • Volume 13 (78)
      • Issue 1 (21)
      • Issue 2 (18)
      • Issue 3 (19)
      • Issue 4 (20)
    • Volume 14 (69)
      • Issue 1 (21)
      • Issue 2 (23)
      • Issue 3 (25)

Keywords

Supply chain management(158)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(112)
Supply chain(106)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(92)
SMEs(85)
optimization(83)
Financial performance(81)
Job satisfaction(78)
Factor analysis(78)
Trust(78)
Knowledge Management(76)
Genetic Algorithm(75)
Sustainability(73)
Social media(73)
TOPSIS(73)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(53)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Jumadil Saputra(35)
Muhammad Turki Alshurideh(35)
Barween Al Kurdi(32)
Dmaithan Almajali(31)
Hassan Ghodrati(31)
Mohammad Khodaei Valahzaghard(30)
Ahmad Makui(30)
Basrowi Basrowi(29)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Prasadja Ricardianto(28)
Sulieman Ibraheem Shelash Al-Hawary(27)
Haitham M. Alzoubi(27)
Ali Harounabadi(26)


» Show all authors

Countries

Iran(2155)
Indonesia(1217)
India(768)
Jordan(731)
Vietnam(494)
Malaysia(418)
Saudi Arabia(411)
United Arab Emirates(210)
China(151)
Thailand(149)
United States(103)
Turkey(98)
Ukraine(97)
Egypt(90)
Canada(83)
Pakistan(81)
Peru(75)
United Kingdom(73)
Nigeria(73)
Morocco(67)


» Show all countries

Decision Science Letters

ISSN 1929-5812 (Online) - ISSN 1929-5804 (Print)
Quarterly Publication
Volume 8 Issue 2 pp. 163-174 , 2019

A novel hybrid backtracking search optimization algorithm for continuous function optimization Pages 163-174 Right click to download the paper Download PDF

Authors: Sukanta Nama, Apu Kumar Saha

DOI: 10.5267/j.dsl.2018.7.002

Keywords: Backtracking Search Optimization Algorithm (BSA), Quadratic approximation (QA), Hybrid Algorithm, Unconstrained non-linear function optimization

Abstract: Stochastic optimization algorithm provides a robust and efficient approach for solving complex real world problems. Backtracking Search Optimization Algorithm (BSA) is a new stochastic evolutionary algorithm and the aim of this paper is to introduce a hybrid approach combining the BSA and Quadratic approximation (QA), called HBSAfor solving unconstrained non-linear, non-differentiable optimization problems. For the validity of the proposed method the results are compared with five state-of-the-art particle swarm optimization (PSO) variant approaches in terms of the numerical result of the solutions. The sensitivity analysis of the BSA control parameter (F) is also performed.

How to cite this paper
Nama, S & Saha, A. (2019). A novel hybrid backtracking search optimization algorithm for continuous function optimization.Decision Science Letters , 8(2), 163-174.

Refrences
Back, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford university press.
Beyer, H. G., & Arnold, D. V. (2001). Theory of evolution strategies—A tutorial. In Theoretical aspects of evolutionary computing (pp. 109-133). Springer, Berlin, Heidelberg.
Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and Computation, 219(15), 8121-8144.
Deep, K., & Das, K. N. (2008). Quadratic approximation based hybrid genetic algorithm for function optimization. Applied Mathematics and Computation, 203(1), 86-98.
Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3-18.
Erol, O. K., & Eksin, I. (2006). A new optimization method: big bang–big crunch. Advances in Engineering Software, 37(2), 106-111.
Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151-166.
Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2011). Mixed variable structural optimization using firefly algorithm. Computers & Structures, 89(23-24), 2325-2336.
Gandomi, A. H., Talatahari, S., Yang, X. S., & Deb, S. (2013). Design optimization of truss structures using cuckoo search algorithm. The Structural Design of Tall and Special Buildings, 22(17), 1330-1349.
Gong, W., Cai, Z., & Ling, C. X. (2010). DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Computing, 15(4), 645-665.
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: charged system search. Acta Mechanica, 213(3-4), 267-289.
Kao, Y. T., & Zahara, E. (2008). A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft Computing, 8(2), 849-857.
Kennedy, J., & Eberhart, R. C. 1995. Particle Swarm Optimization. In IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ (pp. 1942-1948).
Kundra, H., & Sood, M. (2010). Cross-country path finding using hybrid approach of PSO and BBO. International Journal of Computer Applications, 7(6), 15-19.
Li, X., Zhang, J., & Yin, M. (2014). Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Computing and Applications, 24(7-8), 1867-1877.
Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE transactions on evolutionary computation, 10(3), 281-295.
Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied mathematics and computation, 188(2), 1567-1579.
Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: simpler, maybe better. IEEE transactions on evolutionary computation, 8(3), 204-210.
Mohan, C., & Shanker, K. (1994). A controlled random search technique for global optimization using quadratic approximation. Asia-Pacific Journal of Operational Research, 11(1), 93-101.
Nama, S., Saha, A., & Ghosh, S. (2016a). A new ensemble algorithm of differential evolution and backtracking search optimization algorithm with adaptive control parameter for function optimization. International Journal of Industrial Engineering Computations, 7(2), 323-338.
Nama, S., Saha, A., & Ghosh, S. (2016b). Improved symbiotic organisms search algorithm for solving unconstrained function optimization. Decision Science Letters, 5(3), 361-380.
Nama, S., Saha, A. K., & Ghosh, S. (2017c). A hybrid symbiosis organisms search algorithm and its application to real world problems. Memetic Computing, 9(3), 261-280.
Nama, S., Saha, A. K., & Ghosh, S. (2017d). Improved backtracking search algorithm for pseudo dynamic active earth pressure on retaining wall supporting c-Ф backfill. Applied Soft Computing, 52, 885-897.
Nama, S., & Saha, A. (2018a). An ensemble symbiosis organisms search algorithm and its application to real world problems. Decision Science Letters, 7(2), 103-118.
Nama, S., Saha, A.K., (2018b). A new hybrid differential evolution algorithm with self-adaptation for function optimization. Applied Intelligence, 48, 1657–1671.
Parsopoulos, K. E. (2004). UPSO: A unified particle swarm optimization scheme. Lecture Series on Computer and Computational Science, 1, 868-873.
Peram, T., Veeramachaneni, K., & Mohan, C. K. (2003, April). Fitness-distance-ratio based particle swarm optimization. In Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE (pp. 174-181). IEEE.
Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592-2612.
Nemati, S., Basiri, M. E., Ghasem-Aghaee, N., & Aghdam, M. H. (2009). A novel ACO–GA hybrid algorithm for feature selection in protein function prediction. Expert systems with applications, 36(10), 12086-12094.
Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation, 12(6), 702-713.
Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
Van den Bergh, F., & Engelbrecht, A. P. (2004). A cooperative approach to particle swarm optimization. IEEE transactions on evolutionary computation, 8(3), 225-239.
Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67-82.
Yang, X. S., & Press, L. (2010). Nature-Inspired Metaheuristic Algorithms Second Edition.
Yildiz, A. R. (2013). Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Applied Soft Computing, 13(3), 1433-1439.
Zhang, X., & Tang, L. (2009). A new hybrid ant colony optimization algorithm for the vehicle routing problem. Pattern Recognition Letters, 30(9), 848-855.
Zhang, G., Shao, X., Li, P., & Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 56(4), 1309-1318.
  • 85
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Decision Science Letters | Year: 2019 | Volume: 8 | Issue: 2 | Views: 2257 | Reviews: 0

Related Articles:
  • An ensemble symbiosis organisms search algorithm and its application to rea ...
  • Improved symbiotic organisms search algorithm for solving unconstrained fun ...
  • A new ensemble algorithm of differential evolution and backtracking search ...
  • High dimensional real parameter optimization with teaching learning based o ...
  • An elitist teaching-learning-based optimization algorithm for solving compl ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com