How to cite this paper
Parnianifard, A., Azfanizam, A., Ariffin, M., Ismail, M & Ebrahim, N. (2019). Recent developments in metamodel based robust black-box simulation optimization: An overview.Decision Science Letters , 8(1), 17-44.
Refrences
Abspoel, S. J., Etman, L. F. P., Vervoort, J., van Rooij, R. a., a.J.G. Schoofs, & Rooda, J. E. (2001). Simulation based optimization of stochastic systems with integer design variables by sequential multipoint linear approximation. Structural and Multidisciplinary Optimization, 22(2), 125–139.
Aghaei Chadegani, A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, 9(5).
Amaran, S., Sahinidis, N. V, Sharda, B., & Bury, S. J. (2016). Simulation optimization: a review of algorithms and applications. Annals of Operations Research, 240(1), 351–380.
Anderson, R., Wei, Z., Cox, I., Moore, M., & Kussener, F. (2015). Monte Carlo Simulation Experiments for Engineering Optimisation. Studies in Engineering and Technology, 2(1), 97–102.
Ardakani, M. K., & Noorossana, R. (2008). A new optimization criterion for robust parameter design - The case of target is best. International Journal of Advanced Manufacturing Technology, 38(9), 851–859.
Ardakani, M. K., Noorossana, R., Akhavan Niaki, S. T., & Lahijanian, H. (2009). Robust parameter design using the weighted metric method-the case of “the smaller the better.” International Journal of Applied Mathematics and Computer Science, 19(1), 59–68.
Azadivar, F. (1999). Simulation optimization methodologies. In Proceedings of the 31st conference on Winter simulation: Simulation---a bridge to the future (pp. 93–100).
Banks, J., Nelson, B. L., Carson, J. S., & Nicol, D. M. (2010). Discrete-Event System Simulation (Fifth Edition). Published by Pearson.
Barton, R. R. (1992). Metamodels for simulation input-output relations. Proceedings of the 24th Conference on Winter Simulation - WSC ’92, (January), 289–299.
Barton, R. R., & Meckesheimer, M. (2006). Metamodel-Based Simulation Optimization. In Handbooks in Operations Research and Management Science (Vol. 13, pp. 535–574).
Bartz-Beielstein, T., Jung, C., & Zaefferer, M. (2015). Uncertainty Management Using Sequential Parameter Optimization. Uncertainty Management in Simulation-Optimization of Complex Systems, 59.
Bates, R. A., Kenett, R. S., Steinberg, D. M., & Wynn, H. P. (2006). Robust Design Using Computer Experiments. Progress in Industrial Mathematics at ECMI, 8.
Beyer, H. G., & Sendhoff, B. (2007). Robust optimization - A comprehensive survey. Computer Methods in Applied Mechanics and Engineering, 196(33), 3190–3218.
Biles, W. E. (1974). A gradient—regression search procedure for simulation experimentation. In Proceedings of the 7th conference on Winter simulation-Volume 2 (pp. 491–497). Winter Simulation Conference.
Carson, Y., & Maria, A. (1997). Simulation Optimization: Methods and Applications. Proceedings of the 29th Conference on Winter Simulation (1997), 118–126.
Chang, X., Dong, M., & Yang, D. (2013). Multi-objective real-time dispatching for integrated delivery in a Fab using GA based simulation optimization. Journal of Manufacturing Systems, 32(4), 741–751.
Chen, V. C. P., Tsui, K. L., Barton, R. R., & Allen, J. K. (2003). A review of design and modeling in computer experiments. Statistics in Industry, 22, 231–261.
Chen, W., Wiecek, M. M., & Zhang, J. (1999). Quality utility : a Compromise Programming approach to robust design. Journal of Mechanical Design, 121(2), 179–187.
Cozad, A., Sahinidis, N. V, & Miller, D. C. (2014). Learning surrogate models for simulation-based optimization. AIChE Journal, 60(6), 2211–2227.
Del Castillo, E. (2007). Process Optimization A Statistical Approach. Springer Science+Business Media, LLC (Vol. 480).
Del Castillo, E., & Montgomery, D. C. (1993). A nonlinear programming solution to the dual response problem. Journal of Quality Technology, 25, 199–204.
Dellino, G. (2008). Robust Simulation-Optimization Methods using Kriging Metamodels.
Dellino, G., Kleijnen, Jack, P. C., & Meloni, C. (2015). Metamodel-Based Robust Simulation-Optimization: An Overview. In In Uncertainty Management in Simulation-Optimization of Complex Systems (pp. 27–54).
Dellino, G., Kleijnen, J. P. C., & Meloni, C. (2009). Robust simulation-optimization using metamodels. In Winter Simulation Conference (pp. 540–550).
Dellino, G., Kleijnen, J. P. C., & Meloni, C. (2010a). Parametric and distribution-free bootstrapping in robust simulation-optimization. In Proceedings - Winter Simulation Conference (pp. 1283–1294).
Dellino, G., Kleijnen, J. P. C., & Meloni, C. (2010). Robust optimization in simulation: Taguchi and Response Surface Methodology. International Journal of Production Economics, 125(1), 52–59.
Dellino, G., Kleijnen, J. P. C., & Meloni, C. (2010b). Simulation-optimization under uncertainty through metamodeling and bootstrapping. Procedia - Social and Behavioral Sciences, 2(6), 7640–7641.
Dellino, G., Kleijnen, J. P. C., & Meloni, C. (2012). Robust optimization in simulation: Taguchi and Krige combined. INFORMS Journal on Computing, 24(3), 471–484.
Dellino, G., Lino, P., Meloni, C., & Rizzo, A. (2009). Kriging metamodel management in the design optimization of a CNG injection system. Mathematics and Computers in Simulation, 79(8), 2345–2360.
Dellino, G., & Meloni, C. (2015). Uncertainty Management in Simulation- Optimization of Complex Systems.
Dellino, G., Meloni, C., & Pierreval, H. (2014). Simulation-optimization of complex systems: Methods and applications. Simulation Modelling Practice and Theory, 46, 1–3.
Fang, K., Li, R. Z., & Sudjianto, A. (2006). Design and modeling for computer experiments. Chapman {&} Hall/CRC Press.
Figueira, G., & Almada-Lobo, B. (2014). Hybrid simulation optimization methods a taxonomy and discussion. Simulation Modelling Practice and Theory, 46, 118–134.
Forsberg, J., & Nilsson, L. (2005). On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness. Structural and Multidisciplinary Optimization, 29(3), 232–243.
Giunta, A. A., Dudley, J. M., Narducci, R., Grossman, B., Haftka, R. T., Mason, W. H., & Watson, L. T. (1994). Noisy aerodynamic response and smooth approximations in HSCT design. In Proc. 5-th AIAA/USAF/NASA/ISSMO Symp. on Multidisciplinary and Structural Optimization (pp. 1117–1128).
Haftka, R. T., Villanueva, D., & Chaudhuri, A. (2016). Parallel surrogate-assisted global optimization with expensive functions - a survey. Structural and Multidisciplinary Optimization, 54(1), 3–13.
Han, M., & Yong Tan, M. H. (2016). Integrated parameter and tolerance design with computer experiments. IIE Transactions, 48(11), 1004–1015.
Havinga, J., van den Boogaard, A. H., & Klaseboer, G. (2017). Sequential improvement for robust optimization using an uncertainty measure for radial basis functions. Structural and Multidisciplinary Optimization, 55(4), 1345–1363.
He, Z., Wang, J., Jinho, O., & H. Park, S. (2010). Robust optimization for multiple responses using response surface methodology. Applied Stochastic Models in Business and Industry, 26, 157–171.
Iman, R. L., & Conover, W. J. (1982). A distribution-free approach to inducing rank correlation among input variab. Communications in Statistics - Simulation and Computation.
Jalali, H., & Van Nieuwenhuyse, I. (2015). Simulation optimization in inventory replenishment: A classification. IIE Transactions, 47(11), 1217–1235.
Jang, H., & Kim, H. (2014). Research output of science, technology and bioscience publications in Asia. Science Editing, 1(2), 62–70.
Javed, A., Pecnik, R., & van Buijtenen, J. P. (2016). Optimization of a Centrifugal Compressor Impeller for Robustness to Manufacturing Uncertainties. Journal of Engineering for Gas Turbines and Power, 138(11).
Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 23(1), 1–13.
Jin, R., Du, X., & Chen, W. (2003). The use of metamodeling techniques for optimization under uncertainty. Structural and Multidisciplinary Optimization, 25(2), 99–116.
Jurecka, F. (2007). Robust Design Optimization Based on Metamodeling Techniques. PhD Thesis.
Jurecka, F., Ganser, M., & Bletzinger, K. U. (2007). Update scheme for sequential spatial correlation approximations in robust design optimisation. Computers and Structures, 85(10), 606–614.
Kamiński, B. (2015). Interval metamodels for the analysis of simulation Input-Output relations. Simulation Modelling Practice and Theory, 54, 86–100.
Khoshnevisan, S., Wang, L., & Juang, C. H. (2017). Response surface based robust geotechnical design of supported excavation spreadsheet based solution. Georisk, 11(1), 90–102.
Kleijnen, J. P. C. (1993). Simulation and optimization in production planning. Decision Support Systems, 9(3), 269–280.
Kleijnen, J. P. C. (2005). An Overview of the Design and Analysis of Simulation Experiments for Sensitivity Analysis. European Journal of Operational Research, 164(2), 287–300. Retrieved from https://core.ac.uk/download/pdf/6651311.pdf
Kleijnen, J. P. C. (2009a). Factor screening in simulation experiments: Review of sequential bifurcation. In Advancing the frontiers of simulation (pp. 153–167).
Kleijnen, J. P. C. (2009b). Kriging metamodeling in simulation: A review. European Journal of Operational Research, 192(3), 707–716.
Kleijnen, J. P. C. (2010). Sensitivity analysis of simulation models: an overview. Procedia - Social and Behavioral Sciences, 2(6), 7585–7586.
Kleijnen, J. P. C. (2015). Design and analysis of simulation experiments (2nd). Springer.
Kleijnen, J. P. C. (2017). Regression and Kriging metamodels with their experimental designs in simulation - a review. European Journal of Operational Research, 256(1), 1–6.
Kleijnen, J. P. C., & Beers, W. C. M. Van. (2004). Application-driven sequential designs for simulation experiments: Kriging metamodelling. Journal of the Operational Research Society, 55(8), 876–883.
Kleijnen, J. P. C., & Gaury, E. (2003). Short-term robustness of production management systems: A case study. European Journal of Operational Research, 148(2), 452–465.
Kleijnen, J. P. C., & van Beers, W. C. M. (2013). Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations. Journal of the Operational Research Society, 64(5), 708–717.
Krige, D. G. (1951). A statistical approach to some mine valuation and allied problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa.
Kuhnt, S., & Steinberg, D. M. (2010). Design and analysis of computer experiments. AStA Advances in Statistical Analysis, 94(4), 307–309.
Lehman, J. S., Santner, T. J., & Notz, W. I. (2004). Designing Computer Experiments To Determine Robust Control Variables. Statistica Sinica, 14(1), 571–590.
Leotardi, C., Serani, A., Iemma, U., Campana, E. F., & Diez, M. (2016). A variable-accuracy metamodel-based architecture for global MDO under uncertainty. Structural and Multidisciplinary Optimization, 54(3), 573–593.
Li, M., Yang, F., Uzsoy, R., & Xu, J. (2016). A metamodel-based Monte Carlo simulation approach for responsive production planning of manufacturing systems. Journal of Manufacturing Systems, 38, 114–133.
Li, Y. F., Ng, S. H., Xie, M., & Goh, T. N. (2010). A systematic comparison of metamodeling techniques for simulation optimization in Decision Support Systems. Applied Soft Computing, 10(4), 1257–1273.
Lophaven, S. N., Nielsen, H. B., & Søndergaard, J. (2002). DACE — A Matlab Kriging Toolbox (Version 2.0). Technical Report IMM-REP-2002-12, Informatics and Mathematical Modelling, DTU.
McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245.
Moghaddam, S., & Mahlooji, H. (2016). Robust simulation optimization using $φ$-divergence. International Journal of Industrial Engineering Computations, 7(4), 517–534.
Mohammad Nezhad, A., & Mahlooji, H. (2013). An artificial neural network meta-model for constrained simulation optimization. Journal of the Operational Research Society, 65(8), 1232–1244.
Myers, R., C.Montgomery, D., & Anderson-Cook, M, C. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments-Fourth Edittion. John Wiley & Sons.
Neelamkavil, F. (1987). Computer simulation and modelling. John Wiley {&} Sons, Inc.
Nha, V. T., Shin, S., & Jeong, S. H. (2013). Lexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environment. European Journal of Operational Research, 229(2), 505–517.
Park, S., & Antony, J. (2008). Robust design for quality engineering and six sigma. World Scientific.
Parnianifard, A., Azfanizam, A. S., Ariffin, M. K. A., & Ismail, M. I. S. (2018). An overview on robust design hybrid metamodeling : Advanced methodology in process optimization under uncertainty. International Journal of Industrial Engineering Computations, 9(1), 1–32.
Peri, D., & Tinti, F. (2012). A multistart gradient-based algorithm with surrogate model for global optimization. Communications in Applied and Industrial Mathematics, 3(1), 1–22.
Phadke, M. S. (1989). Quality Engineering Using Robust Design. Prentice Hall PTR.
Rutten, K. (2015). Methods For Online Sequential Process Improvement. PhD Thesis.
Sanchez, S. M. (2000). Robust design: Seeking the best of all possible worlds. In In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (eds.) Proceedings of the Winter Simulation Conference (Vol. 1, pp. 69–76).
Sathishkumar, L., & Venkateswaran, J. (2016). Impact of input data parameter uncertainty on simulation-based decision making. In IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1267–1271).
Shan, S., & Wang, G. G. (2010). Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Structural and Multidisciplinary Optimization, 41(2), 219–241.
Simpson, T., Booker, A., Ghosh, D., Giunta, A. A., Koch, P. N., & Yang, R.-J. (2004). Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Structural andMultidisciplinary Optimization, 27(5), 302–313.
Simpson, T. W., Mauery, T. M., Korte, J., & Mistree, F. (2001). Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 39(12), 2233–2241.
Simpson, T. W., Poplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for Computer-based Engineering Design: Survey and recommendations. Engineering With Computers, 17(2), 129–150.
Sóbester, A., Leary, S. J., & Keane, A. J. (2004). A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Structural and Multidisciplinary Optimization, 27(5), 371–383.
Sreekanth, J., Moore, C., & Wolf, L. (2016). Pareto-based efficient stochastic simulation-optimization for robust and reliable groundwater management. Journal of Hydrology, 533, 180–190.
Steenackers, G., Guillaume, P., & Vanlanduit, S. (2009). Robust Optimization of an Airplane Component Taking into Account the Uncertainty of the Design Parameters. Quality and Reliability Engineering International, 25(3), 255–282.
Stinstra, E., & den Hertog, D. (2008). Robust optimization using computer experiments. European Journal of Operational Research, 191(3), 816–837.
Taflanidis, A. A., & Medina, J. C. (2015). Simulation-Based Optimization in Design-Under-Uncertainty Problems Through Iterative Development of Metamodels in Augmented Design/Random Variable Space. In Simulation and Modeling Methodologies, Technologies and Applications (Vol. 402, pp. 251–273). Springer.
Teleb, R., & Azadivar, F. (1994). A methodology for solving multi-objective simulatlon-optimization problems. European Journal of Operational Research, 72, 135–145.
Truong, H. T., & Azadivar, F. (2003). Simulation based optimization for supply chain configuration design. In Winter simulation conference (pp. 1268–1275).
Uddameri, V., Hernandez, E. A., & Estrada, F. (2014). A fuzzy simulation-optimization approach for optimal estimation of groundwater availability under decision maker uncertainty. Environmental Earth Sciences, 71(6), 2559–2572.
van Beers, W. C. M., & Kleijnen, J. P. C. (2003). Kriging for interpolation in random simulation. Journal of the Operational Research Society, 54(3), 255–262.
Van Beers, W. C. M., & Kleijnen, J. P. C. (2004). Kriging Interpolation in Simulation: A Survey. Proceedings of the 2004 Winter Simulation Conference, 2004., 1, 107–115.
Viana, F. A. C., Simpson, T. W., Balabanov, V., & Toropov, V. (2014). Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come? AIAA Journal, 52(4), 670–690.
Vining, G., & Myers, R. (1990). Combining Taguchi and response surface philosophies- A dual response approach. Journal of Quality Technology, 22(1), 38–45.
Wang, G. G. (2003). Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points. Journal of Mechanical Design, 125(2), 210–220.
Wang, G., & Shan, S. (2007). Review of Metamodeling Techniques in Support of Engineering Design Optimization. Journal of Mechanical Design, 129(4), 370–380.
Wiebenga, J. H., Van Den Boogaard, A. H., & Klaseboer, G. (2012). Sequential robust optimization of a V-bending process using numerical simulations. Structural and Multidisciplinary Optimization, 46(1), 137–153.
Williams, B., Higdon, D., Gattiker, J., Moore, L., McKay, M., & Keller-McNulty, S. (2006). Combining experimental data and computer simulations, with an application to flyer plate experiments. Bayesian Analysis, 1(4), 765–792.
Wim, C. ., Beers, V., & Kleijnen, J. P. C. (2008). Customized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping. European Journal of Operational Research, 186(3), 1099–1113.
Yanikoglu, I., Hertog, D. Den, & Kleijnen, J. P. C. (2016). Robust Dual Response Optimization. IIE Transactions, 48(3), 298–312.
Zhang, J., Chowdhury, S., Zhang, J., Messac, A., & Castillo, L. (2013). Adaptive Hybrid Surrogate Modeling for Complex Systems. AIAA Journal, 51(3), 643–656.
Zhang, J. L., Li, Y. P., & Huang, G. H. (2014). A robust simulation-optimization modeling system for effluent trading-a case study of nonpoint source pollution control. Environmental Science and Pollution Research, 21(7), 5036–5053.
Zhang, J., Taflanidis, A. A., & Medina, J. C. (2017). Sequential approximate optimization for design under uncertainty problems utilizing Kriging metamodeling in augmented input space. Computer Methods in Applied Mechanics and Engineering, 315, 369–395.
Zhou, H., Zhou, Q., Liu, C., & Zhou, T. (2017). A Kriging metamodel-assisted robust optimization method based on a reverse model. Engineering Optimization, 1–20.
Aghaei Chadegani, A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, 9(5).
Amaran, S., Sahinidis, N. V, Sharda, B., & Bury, S. J. (2016). Simulation optimization: a review of algorithms and applications. Annals of Operations Research, 240(1), 351–380.
Anderson, R., Wei, Z., Cox, I., Moore, M., & Kussener, F. (2015). Monte Carlo Simulation Experiments for Engineering Optimisation. Studies in Engineering and Technology, 2(1), 97–102.
Ardakani, M. K., & Noorossana, R. (2008). A new optimization criterion for robust parameter design - The case of target is best. International Journal of Advanced Manufacturing Technology, 38(9), 851–859.
Ardakani, M. K., Noorossana, R., Akhavan Niaki, S. T., & Lahijanian, H. (2009). Robust parameter design using the weighted metric method-the case of “the smaller the better.” International Journal of Applied Mathematics and Computer Science, 19(1), 59–68.
Azadivar, F. (1999). Simulation optimization methodologies. In Proceedings of the 31st conference on Winter simulation: Simulation---a bridge to the future (pp. 93–100).
Banks, J., Nelson, B. L., Carson, J. S., & Nicol, D. M. (2010). Discrete-Event System Simulation (Fifth Edition). Published by Pearson.
Barton, R. R. (1992). Metamodels for simulation input-output relations. Proceedings of the 24th Conference on Winter Simulation - WSC ’92, (January), 289–299.
Barton, R. R., & Meckesheimer, M. (2006). Metamodel-Based Simulation Optimization. In Handbooks in Operations Research and Management Science (Vol. 13, pp. 535–574).
Bartz-Beielstein, T., Jung, C., & Zaefferer, M. (2015). Uncertainty Management Using Sequential Parameter Optimization. Uncertainty Management in Simulation-Optimization of Complex Systems, 59.
Bates, R. A., Kenett, R. S., Steinberg, D. M., & Wynn, H. P. (2006). Robust Design Using Computer Experiments. Progress in Industrial Mathematics at ECMI, 8.
Beyer, H. G., & Sendhoff, B. (2007). Robust optimization - A comprehensive survey. Computer Methods in Applied Mechanics and Engineering, 196(33), 3190–3218.
Biles, W. E. (1974). A gradient—regression search procedure for simulation experimentation. In Proceedings of the 7th conference on Winter simulation-Volume 2 (pp. 491–497). Winter Simulation Conference.
Carson, Y., & Maria, A. (1997). Simulation Optimization: Methods and Applications. Proceedings of the 29th Conference on Winter Simulation (1997), 118–126.
Chang, X., Dong, M., & Yang, D. (2013). Multi-objective real-time dispatching for integrated delivery in a Fab using GA based simulation optimization. Journal of Manufacturing Systems, 32(4), 741–751.
Chen, V. C. P., Tsui, K. L., Barton, R. R., & Allen, J. K. (2003). A review of design and modeling in computer experiments. Statistics in Industry, 22, 231–261.
Chen, W., Wiecek, M. M., & Zhang, J. (1999). Quality utility : a Compromise Programming approach to robust design. Journal of Mechanical Design, 121(2), 179–187.
Cozad, A., Sahinidis, N. V, & Miller, D. C. (2014). Learning surrogate models for simulation-based optimization. AIChE Journal, 60(6), 2211–2227.
Del Castillo, E. (2007). Process Optimization A Statistical Approach. Springer Science+Business Media, LLC (Vol. 480).
Del Castillo, E., & Montgomery, D. C. (1993). A nonlinear programming solution to the dual response problem. Journal of Quality Technology, 25, 199–204.
Dellino, G. (2008). Robust Simulation-Optimization Methods using Kriging Metamodels.
Dellino, G., Kleijnen, Jack, P. C., & Meloni, C. (2015). Metamodel-Based Robust Simulation-Optimization: An Overview. In In Uncertainty Management in Simulation-Optimization of Complex Systems (pp. 27–54).
Dellino, G., Kleijnen, J. P. C., & Meloni, C. (2009). Robust simulation-optimization using metamodels. In Winter Simulation Conference (pp. 540–550).
Dellino, G., Kleijnen, J. P. C., & Meloni, C. (2010a). Parametric and distribution-free bootstrapping in robust simulation-optimization. In Proceedings - Winter Simulation Conference (pp. 1283–1294).
Dellino, G., Kleijnen, J. P. C., & Meloni, C. (2010). Robust optimization in simulation: Taguchi and Response Surface Methodology. International Journal of Production Economics, 125(1), 52–59.
Dellino, G., Kleijnen, J. P. C., & Meloni, C. (2010b). Simulation-optimization under uncertainty through metamodeling and bootstrapping. Procedia - Social and Behavioral Sciences, 2(6), 7640–7641.
Dellino, G., Kleijnen, J. P. C., & Meloni, C. (2012). Robust optimization in simulation: Taguchi and Krige combined. INFORMS Journal on Computing, 24(3), 471–484.
Dellino, G., Lino, P., Meloni, C., & Rizzo, A. (2009). Kriging metamodel management in the design optimization of a CNG injection system. Mathematics and Computers in Simulation, 79(8), 2345–2360.
Dellino, G., & Meloni, C. (2015). Uncertainty Management in Simulation- Optimization of Complex Systems.
Dellino, G., Meloni, C., & Pierreval, H. (2014). Simulation-optimization of complex systems: Methods and applications. Simulation Modelling Practice and Theory, 46, 1–3.
Fang, K., Li, R. Z., & Sudjianto, A. (2006). Design and modeling for computer experiments. Chapman {&} Hall/CRC Press.
Figueira, G., & Almada-Lobo, B. (2014). Hybrid simulation optimization methods a taxonomy and discussion. Simulation Modelling Practice and Theory, 46, 118–134.
Forsberg, J., & Nilsson, L. (2005). On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness. Structural and Multidisciplinary Optimization, 29(3), 232–243.
Giunta, A. A., Dudley, J. M., Narducci, R., Grossman, B., Haftka, R. T., Mason, W. H., & Watson, L. T. (1994). Noisy aerodynamic response and smooth approximations in HSCT design. In Proc. 5-th AIAA/USAF/NASA/ISSMO Symp. on Multidisciplinary and Structural Optimization (pp. 1117–1128).
Haftka, R. T., Villanueva, D., & Chaudhuri, A. (2016). Parallel surrogate-assisted global optimization with expensive functions - a survey. Structural and Multidisciplinary Optimization, 54(1), 3–13.
Han, M., & Yong Tan, M. H. (2016). Integrated parameter and tolerance design with computer experiments. IIE Transactions, 48(11), 1004–1015.
Havinga, J., van den Boogaard, A. H., & Klaseboer, G. (2017). Sequential improvement for robust optimization using an uncertainty measure for radial basis functions. Structural and Multidisciplinary Optimization, 55(4), 1345–1363.
He, Z., Wang, J., Jinho, O., & H. Park, S. (2010). Robust optimization for multiple responses using response surface methodology. Applied Stochastic Models in Business and Industry, 26, 157–171.
Iman, R. L., & Conover, W. J. (1982). A distribution-free approach to inducing rank correlation among input variab. Communications in Statistics - Simulation and Computation.
Jalali, H., & Van Nieuwenhuyse, I. (2015). Simulation optimization in inventory replenishment: A classification. IIE Transactions, 47(11), 1217–1235.
Jang, H., & Kim, H. (2014). Research output of science, technology and bioscience publications in Asia. Science Editing, 1(2), 62–70.
Javed, A., Pecnik, R., & van Buijtenen, J. P. (2016). Optimization of a Centrifugal Compressor Impeller for Robustness to Manufacturing Uncertainties. Journal of Engineering for Gas Turbines and Power, 138(11).
Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 23(1), 1–13.
Jin, R., Du, X., & Chen, W. (2003). The use of metamodeling techniques for optimization under uncertainty. Structural and Multidisciplinary Optimization, 25(2), 99–116.
Jurecka, F. (2007). Robust Design Optimization Based on Metamodeling Techniques. PhD Thesis.
Jurecka, F., Ganser, M., & Bletzinger, K. U. (2007). Update scheme for sequential spatial correlation approximations in robust design optimisation. Computers and Structures, 85(10), 606–614.
Kamiński, B. (2015). Interval metamodels for the analysis of simulation Input-Output relations. Simulation Modelling Practice and Theory, 54, 86–100.
Khoshnevisan, S., Wang, L., & Juang, C. H. (2017). Response surface based robust geotechnical design of supported excavation spreadsheet based solution. Georisk, 11(1), 90–102.
Kleijnen, J. P. C. (1993). Simulation and optimization in production planning. Decision Support Systems, 9(3), 269–280.
Kleijnen, J. P. C. (2005). An Overview of the Design and Analysis of Simulation Experiments for Sensitivity Analysis. European Journal of Operational Research, 164(2), 287–300. Retrieved from https://core.ac.uk/download/pdf/6651311.pdf
Kleijnen, J. P. C. (2009a). Factor screening in simulation experiments: Review of sequential bifurcation. In Advancing the frontiers of simulation (pp. 153–167).
Kleijnen, J. P. C. (2009b). Kriging metamodeling in simulation: A review. European Journal of Operational Research, 192(3), 707–716.
Kleijnen, J. P. C. (2010). Sensitivity analysis of simulation models: an overview. Procedia - Social and Behavioral Sciences, 2(6), 7585–7586.
Kleijnen, J. P. C. (2015). Design and analysis of simulation experiments (2nd). Springer.
Kleijnen, J. P. C. (2017). Regression and Kriging metamodels with their experimental designs in simulation - a review. European Journal of Operational Research, 256(1), 1–6.
Kleijnen, J. P. C., & Beers, W. C. M. Van. (2004). Application-driven sequential designs for simulation experiments: Kriging metamodelling. Journal of the Operational Research Society, 55(8), 876–883.
Kleijnen, J. P. C., & Gaury, E. (2003). Short-term robustness of production management systems: A case study. European Journal of Operational Research, 148(2), 452–465.
Kleijnen, J. P. C., & van Beers, W. C. M. (2013). Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations. Journal of the Operational Research Society, 64(5), 708–717.
Krige, D. G. (1951). A statistical approach to some mine valuation and allied problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa.
Kuhnt, S., & Steinberg, D. M. (2010). Design and analysis of computer experiments. AStA Advances in Statistical Analysis, 94(4), 307–309.
Lehman, J. S., Santner, T. J., & Notz, W. I. (2004). Designing Computer Experiments To Determine Robust Control Variables. Statistica Sinica, 14(1), 571–590.
Leotardi, C., Serani, A., Iemma, U., Campana, E. F., & Diez, M. (2016). A variable-accuracy metamodel-based architecture for global MDO under uncertainty. Structural and Multidisciplinary Optimization, 54(3), 573–593.
Li, M., Yang, F., Uzsoy, R., & Xu, J. (2016). A metamodel-based Monte Carlo simulation approach for responsive production planning of manufacturing systems. Journal of Manufacturing Systems, 38, 114–133.
Li, Y. F., Ng, S. H., Xie, M., & Goh, T. N. (2010). A systematic comparison of metamodeling techniques for simulation optimization in Decision Support Systems. Applied Soft Computing, 10(4), 1257–1273.
Lophaven, S. N., Nielsen, H. B., & Søndergaard, J. (2002). DACE — A Matlab Kriging Toolbox (Version 2.0). Technical Report IMM-REP-2002-12, Informatics and Mathematical Modelling, DTU.
McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245.
Moghaddam, S., & Mahlooji, H. (2016). Robust simulation optimization using $φ$-divergence. International Journal of Industrial Engineering Computations, 7(4), 517–534.
Mohammad Nezhad, A., & Mahlooji, H. (2013). An artificial neural network meta-model for constrained simulation optimization. Journal of the Operational Research Society, 65(8), 1232–1244.
Myers, R., C.Montgomery, D., & Anderson-Cook, M, C. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments-Fourth Edittion. John Wiley & Sons.
Neelamkavil, F. (1987). Computer simulation and modelling. John Wiley {&} Sons, Inc.
Nha, V. T., Shin, S., & Jeong, S. H. (2013). Lexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environment. European Journal of Operational Research, 229(2), 505–517.
Park, S., & Antony, J. (2008). Robust design for quality engineering and six sigma. World Scientific.
Parnianifard, A., Azfanizam, A. S., Ariffin, M. K. A., & Ismail, M. I. S. (2018). An overview on robust design hybrid metamodeling : Advanced methodology in process optimization under uncertainty. International Journal of Industrial Engineering Computations, 9(1), 1–32.
Peri, D., & Tinti, F. (2012). A multistart gradient-based algorithm with surrogate model for global optimization. Communications in Applied and Industrial Mathematics, 3(1), 1–22.
Phadke, M. S. (1989). Quality Engineering Using Robust Design. Prentice Hall PTR.
Rutten, K. (2015). Methods For Online Sequential Process Improvement. PhD Thesis.
Sanchez, S. M. (2000). Robust design: Seeking the best of all possible worlds. In In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (eds.) Proceedings of the Winter Simulation Conference (Vol. 1, pp. 69–76).
Sathishkumar, L., & Venkateswaran, J. (2016). Impact of input data parameter uncertainty on simulation-based decision making. In IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1267–1271).
Shan, S., & Wang, G. G. (2010). Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Structural and Multidisciplinary Optimization, 41(2), 219–241.
Simpson, T., Booker, A., Ghosh, D., Giunta, A. A., Koch, P. N., & Yang, R.-J. (2004). Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Structural andMultidisciplinary Optimization, 27(5), 302–313.
Simpson, T. W., Mauery, T. M., Korte, J., & Mistree, F. (2001). Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 39(12), 2233–2241.
Simpson, T. W., Poplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for Computer-based Engineering Design: Survey and recommendations. Engineering With Computers, 17(2), 129–150.
Sóbester, A., Leary, S. J., & Keane, A. J. (2004). A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Structural and Multidisciplinary Optimization, 27(5), 371–383.
Sreekanth, J., Moore, C., & Wolf, L. (2016). Pareto-based efficient stochastic simulation-optimization for robust and reliable groundwater management. Journal of Hydrology, 533, 180–190.
Steenackers, G., Guillaume, P., & Vanlanduit, S. (2009). Robust Optimization of an Airplane Component Taking into Account the Uncertainty of the Design Parameters. Quality and Reliability Engineering International, 25(3), 255–282.
Stinstra, E., & den Hertog, D. (2008). Robust optimization using computer experiments. European Journal of Operational Research, 191(3), 816–837.
Taflanidis, A. A., & Medina, J. C. (2015). Simulation-Based Optimization in Design-Under-Uncertainty Problems Through Iterative Development of Metamodels in Augmented Design/Random Variable Space. In Simulation and Modeling Methodologies, Technologies and Applications (Vol. 402, pp. 251–273). Springer.
Teleb, R., & Azadivar, F. (1994). A methodology for solving multi-objective simulatlon-optimization problems. European Journal of Operational Research, 72, 135–145.
Truong, H. T., & Azadivar, F. (2003). Simulation based optimization for supply chain configuration design. In Winter simulation conference (pp. 1268–1275).
Uddameri, V., Hernandez, E. A., & Estrada, F. (2014). A fuzzy simulation-optimization approach for optimal estimation of groundwater availability under decision maker uncertainty. Environmental Earth Sciences, 71(6), 2559–2572.
van Beers, W. C. M., & Kleijnen, J. P. C. (2003). Kriging for interpolation in random simulation. Journal of the Operational Research Society, 54(3), 255–262.
Van Beers, W. C. M., & Kleijnen, J. P. C. (2004). Kriging Interpolation in Simulation: A Survey. Proceedings of the 2004 Winter Simulation Conference, 2004., 1, 107–115.
Viana, F. A. C., Simpson, T. W., Balabanov, V., & Toropov, V. (2014). Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come? AIAA Journal, 52(4), 670–690.
Vining, G., & Myers, R. (1990). Combining Taguchi and response surface philosophies- A dual response approach. Journal of Quality Technology, 22(1), 38–45.
Wang, G. G. (2003). Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points. Journal of Mechanical Design, 125(2), 210–220.
Wang, G., & Shan, S. (2007). Review of Metamodeling Techniques in Support of Engineering Design Optimization. Journal of Mechanical Design, 129(4), 370–380.
Wiebenga, J. H., Van Den Boogaard, A. H., & Klaseboer, G. (2012). Sequential robust optimization of a V-bending process using numerical simulations. Structural and Multidisciplinary Optimization, 46(1), 137–153.
Williams, B., Higdon, D., Gattiker, J., Moore, L., McKay, M., & Keller-McNulty, S. (2006). Combining experimental data and computer simulations, with an application to flyer plate experiments. Bayesian Analysis, 1(4), 765–792.
Wim, C. ., Beers, V., & Kleijnen, J. P. C. (2008). Customized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping. European Journal of Operational Research, 186(3), 1099–1113.
Yanikoglu, I., Hertog, D. Den, & Kleijnen, J. P. C. (2016). Robust Dual Response Optimization. IIE Transactions, 48(3), 298–312.
Zhang, J., Chowdhury, S., Zhang, J., Messac, A., & Castillo, L. (2013). Adaptive Hybrid Surrogate Modeling for Complex Systems. AIAA Journal, 51(3), 643–656.
Zhang, J. L., Li, Y. P., & Huang, G. H. (2014). A robust simulation-optimization modeling system for effluent trading-a case study of nonpoint source pollution control. Environmental Science and Pollution Research, 21(7), 5036–5053.
Zhang, J., Taflanidis, A. A., & Medina, J. C. (2017). Sequential approximate optimization for design under uncertainty problems utilizing Kriging metamodeling in augmented input space. Computer Methods in Applied Mechanics and Engineering, 315, 369–395.
Zhou, H., Zhou, Q., Liu, C., & Zhou, T. (2017). A Kriging metamodel-assisted robust optimization method based on a reverse model. Engineering Optimization, 1–20.