How to cite this paper
Rabbani, M., Rezaei, H., Lashgari, M & Farrokhi-Asl, H. (2018). Vendor managed inventory control system for deteriorating items using metaheuristic algorithms.Decision Science Letters , 7(1), 25-38.
Refrences
Abad, P. L. (2001). Optimal price and order size for a reseller under partial backordering. Computers & Operations Research, 28(1), 53-65.
Bahari-Kashani, H. (1989). Replenishment schedule for deteriorating items with time-proportional demand. Journal of the operational research society, 40(1), 75-81.
Bhunia, A. K., & Maiti, M. (1998). Deterministic inventory model for deteriorating items with finite rate of replenishment dependent on inventory level. Computers & operations research, 25(11), 997-1006.
Cárdenas-Barrón, L. E., Treviño-Garza, G., & Wee, H. M. (2012). A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Systems with Applications, 39(3), 3888-3895.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions, 5(4), 323-326.
Farrokhi-Asl, H., Tavakkoli-Moghaddam, R., Asgarian, B., & Sangari, E. (2016). Metaheuristics for a bi-objective location-routing-problem in waste collection management. Journal of Industrial and Production Engineering, 1-14.
Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of industrial Engineering, 14(5), 238-243.
Goswami, A., & Chaudhuri, K. S. (1991). An EOQ model for deteriorating items with shortages and a linear trend in demand. Journal of the Operational Research Society, 42(12), 1105-1110.
Guchhait, P., Maiti, M. K., & Maiti, M. (2015). An EOQ model of deteriorating item in imprecise environment with dynamic deterioration and credit linked demand. Applied Mathematical Modelling, 39(21), 6553-6567.
Hall, R. W., & American Production and Inventory Control Society. (1983).Zero inventories. Homewood, IL: Dow Jones-Irwin.
Harris, F. W. (1913). How many parts to make at once. Factory, the Magazine of Management, 10(2), 135-136.
Herron, D. P. (1979). Managing physical distribution for profit. Harvard Business Review, 57(3), 121-132.
Kazemi, N., Olugu, E. U., Abdul-Rashid, S. H., & Ghazilla, R. A. R. (2016). A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study. Computers & Industrial Engineering, 96, 140-148.
Maity, K., & Maiti, M. (2009). Optimal inventory policies for deteriorating complementary and substitute items. International Journal of Systems Science, 40(3), 267-276.
Ouyang, L. Y., Teng, J. T., Goyal, S. K., & Yang, C. T. (2009). An economic order quantity model for deteriorating items with partially permissible delay in payments linked to order quantity. European Journal of Operational Research, 194(2), 418-431.
Park, K. S. (1983). An integrated production-inventory model for decaying raw materials. International Journal of Systems Science, 14(7), 801-806.
Poozesh, P., Baqersad, J., Niezrecki, C., Harvey, E., & Yarala, R. (2014). Full field inspection of a utility scale wind turbine blade using digital image correlation. CAMX, Orlando, FL, 10(2.1), 2891-2960.
Rabbani, M., Ramezankhani, M. J., Farrokhi-Asl, H., & Farshbaf-Geranmayeh, A. (2015). Vehicle Routing with Time Windows and Customer Selection for Perishable Goods. International Journal of Supply and Operations Management, 2(2), 700-719.
Sana, S. S. (2010). Optimal selling price and lot size with time varying deterioration and partial backlogging. Applied Mathematics and Computation, 217(1), 185-194.
Tadikamalla, P. R. (1978). An EOQ inventory model for items with gamma distributed deterioration. AIIE transactions, 10(1), 100-103.
Tai, A. H., Xie, Y., & Ching, W. K. (2016). Inspection policy for inventory system with deteriorating products. International Journal of Production Economics, 173, 22-29.
Tat, R., Taleizadeh, A. A., & Esmaeili, M. (2015). Developing economic order quantity model for non-instantaneous deteriorating items in vendor-managed inventory (VMI) system. International Journal of Systems Science, 46(7), 1257-1268.
Waller, M., Johnson, M. E., & Davis, T. (1999). Vendor-managed inventory in the retail supply chain. Journal of business logistics, 20(1), 183.
Whitin, T.M. (1957).Theory of inventory management. Princeton, NJ: Princeton University Press.
Wee, H. M., & Law, S. T. (2001). Replenishment and pricing policy for deteriorating items taking into account the time-value of money. International Journal of Production Economics, 71(1), 213-220.
Wee, H. M., Lo, C. C., & Hsu, P. H. (2009). A multi-objective joint replenishment inventory model of deteriorated items in a fuzzy environment. European Journal of Operational Research, 197(2), 620-631.
Wu, J., Ouyang, L. Y., Cárdenas-Barrón, L. E., & Goyal, S. K. (2014). Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing. European Journal of Operational Research, 237(3), 898-908.
Yager, R. R. (1979, January). Ranking fuzzy subsets over the unit interval. In Decision and Control including the 17th Symposium on Adaptive Processes, 1978 IEEE Conference on (pp. 1435-1437). IEEE.
Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24(2), 143-161.
Yu, Y., & Huang, G. Q. (2010). Nash game model for optimizing market strategies, configuration of platform products in a Vendor Managed Inventory (VMI) supply chain for a product family. European Journal of Operational Research, 206(2), 361-373.
Yu, Y., Chu, C., Chen, H., & Chu, F. (2012). Large scale stochastic inventory routing problems with split delivery and service level constraints. Annals of Operations Research, 197(1), 135-158.
Zanoni, S., & Zavanella, L. (2007). Single-vendor single-buyer with integrated transport-inventory system: Models and heuristics in the case of perishable goods. Computers & Industrial Engineering, 52(1), 107-123.
Bahari-Kashani, H. (1989). Replenishment schedule for deteriorating items with time-proportional demand. Journal of the operational research society, 40(1), 75-81.
Bhunia, A. K., & Maiti, M. (1998). Deterministic inventory model for deteriorating items with finite rate of replenishment dependent on inventory level. Computers & operations research, 25(11), 997-1006.
Cárdenas-Barrón, L. E., Treviño-Garza, G., & Wee, H. M. (2012). A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Systems with Applications, 39(3), 3888-3895.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions, 5(4), 323-326.
Farrokhi-Asl, H., Tavakkoli-Moghaddam, R., Asgarian, B., & Sangari, E. (2016). Metaheuristics for a bi-objective location-routing-problem in waste collection management. Journal of Industrial and Production Engineering, 1-14.
Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of industrial Engineering, 14(5), 238-243.
Goswami, A., & Chaudhuri, K. S. (1991). An EOQ model for deteriorating items with shortages and a linear trend in demand. Journal of the Operational Research Society, 42(12), 1105-1110.
Guchhait, P., Maiti, M. K., & Maiti, M. (2015). An EOQ model of deteriorating item in imprecise environment with dynamic deterioration and credit linked demand. Applied Mathematical Modelling, 39(21), 6553-6567.
Hall, R. W., & American Production and Inventory Control Society. (1983).Zero inventories. Homewood, IL: Dow Jones-Irwin.
Harris, F. W. (1913). How many parts to make at once. Factory, the Magazine of Management, 10(2), 135-136.
Herron, D. P. (1979). Managing physical distribution for profit. Harvard Business Review, 57(3), 121-132.
Kazemi, N., Olugu, E. U., Abdul-Rashid, S. H., & Ghazilla, R. A. R. (2016). A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study. Computers & Industrial Engineering, 96, 140-148.
Maity, K., & Maiti, M. (2009). Optimal inventory policies for deteriorating complementary and substitute items. International Journal of Systems Science, 40(3), 267-276.
Ouyang, L. Y., Teng, J. T., Goyal, S. K., & Yang, C. T. (2009). An economic order quantity model for deteriorating items with partially permissible delay in payments linked to order quantity. European Journal of Operational Research, 194(2), 418-431.
Park, K. S. (1983). An integrated production-inventory model for decaying raw materials. International Journal of Systems Science, 14(7), 801-806.
Poozesh, P., Baqersad, J., Niezrecki, C., Harvey, E., & Yarala, R. (2014). Full field inspection of a utility scale wind turbine blade using digital image correlation. CAMX, Orlando, FL, 10(2.1), 2891-2960.
Rabbani, M., Ramezankhani, M. J., Farrokhi-Asl, H., & Farshbaf-Geranmayeh, A. (2015). Vehicle Routing with Time Windows and Customer Selection for Perishable Goods. International Journal of Supply and Operations Management, 2(2), 700-719.
Sana, S. S. (2010). Optimal selling price and lot size with time varying deterioration and partial backlogging. Applied Mathematics and Computation, 217(1), 185-194.
Tadikamalla, P. R. (1978). An EOQ inventory model for items with gamma distributed deterioration. AIIE transactions, 10(1), 100-103.
Tai, A. H., Xie, Y., & Ching, W. K. (2016). Inspection policy for inventory system with deteriorating products. International Journal of Production Economics, 173, 22-29.
Tat, R., Taleizadeh, A. A., & Esmaeili, M. (2015). Developing economic order quantity model for non-instantaneous deteriorating items in vendor-managed inventory (VMI) system. International Journal of Systems Science, 46(7), 1257-1268.
Waller, M., Johnson, M. E., & Davis, T. (1999). Vendor-managed inventory in the retail supply chain. Journal of business logistics, 20(1), 183.
Whitin, T.M. (1957).Theory of inventory management. Princeton, NJ: Princeton University Press.
Wee, H. M., & Law, S. T. (2001). Replenishment and pricing policy for deteriorating items taking into account the time-value of money. International Journal of Production Economics, 71(1), 213-220.
Wee, H. M., Lo, C. C., & Hsu, P. H. (2009). A multi-objective joint replenishment inventory model of deteriorated items in a fuzzy environment. European Journal of Operational Research, 197(2), 620-631.
Wu, J., Ouyang, L. Y., Cárdenas-Barrón, L. E., & Goyal, S. K. (2014). Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing. European Journal of Operational Research, 237(3), 898-908.
Yager, R. R. (1979, January). Ranking fuzzy subsets over the unit interval. In Decision and Control including the 17th Symposium on Adaptive Processes, 1978 IEEE Conference on (pp. 1435-1437). IEEE.
Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24(2), 143-161.
Yu, Y., & Huang, G. Q. (2010). Nash game model for optimizing market strategies, configuration of platform products in a Vendor Managed Inventory (VMI) supply chain for a product family. European Journal of Operational Research, 206(2), 361-373.
Yu, Y., Chu, C., Chen, H., & Chu, F. (2012). Large scale stochastic inventory routing problems with split delivery and service level constraints. Annals of Operations Research, 197(1), 135-158.
Zanoni, S., & Zavanella, L. (2007). Single-vendor single-buyer with integrated transport-inventory system: Models and heuristics in the case of perishable goods. Computers & Industrial Engineering, 52(1), 107-123.