How to cite this paper
Delgoshaei, A., Al-Mudhafar, A & Ariffin, M. (2016). Developing a new method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive resources.Decision Science Letters , 5(4), 499-518.
Refrences
Abbasi, B., Shadrokh, S., & Arkat, J. (2006). Bi-objective resource-constrained project scheduling with robustness and makespan criteria. Applied Mathematics and Computation, 180(1), 146-152.
Achuthan, N., & Hardjawidjaja, A. (2001). Project scheduling under time dependent costs–A branch and bound algorithm. Annals of Operations Research, 108(1-4), 55-74.
Alcaraz, J., & Maroto, C. (2001). A robust genetic algorithm for resource allocation in project scheduling. Annals of Operations Research, 102(1-4), 83-109.
Ballestín, F., Valls, V., & Quintanilla, S. (2008). Pre-emption in resource-constrained project scheduling. European Journal of Operational Research, 189(3), 1136-1152.
Baroum, S. M., & Patterson, J. H. (1999). An exact solution procedure for maximizing the net present value of cash flows in a network Project Scheduling (pp. 107-134): Springer.
Buddhakulsomsiri, J., & Kim, D. S. (2006). Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Operational Research, 175(1), 279-295.
Castejón-Limas, M., Ordieres-Meré, J., González-Marcos, A., & González-Castro, V. (2011). Effort estimates through project complexity. Annals of Operations Research, 186(1), 395-406.
Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & industrial engineering, 55(1), 183-194.
Damay, J., Quilliot, A., & Sanlaville, E. (2007). Linear programming based algorithms for preemptive and non-preemptive RCPSP. European Journal of Operational Research, 182(3), 1012-1022.
De Reyck, B. (1998). A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 111(1), 152-174.
Delgoshaei, A., Ariffin, M. K., Baharudin, B. H. T. B., & Leman, Z. (2014). A Backward Approach for Maximizing Net Present Value of Multi-mode Pre-emptive Resource-Constrained Project Scheduling Problem with Discounted Cash Flows Using Simulated Annealing Algorithm. International Journal of Industrial Engineering and Management, 5(3), 151-158.
Delgoshaei, A., Ariffin, M. K. M., Baharudin, B. H. T. B., & Leman, Z. (2015). Minimizing makespan of a resource-constrained scheduling problem: A hybrid greedy and genetic algorithms. Resource.
Demeulemeester, E. L., & Herroelen, W. S. (1996). An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem. European Journal of Operational Research, 90(2), 334-348.
Elmaghraby, S. E., & Herroelen, W. S. (1990). The scheduling of activities to maximize the net present value of projects. European Journal of Operational Research, 49(1), 35-49.
Etgar, R., Shtub, A., & LeBlanc, L. J. (1997). Scheduling projects to maximize net present value—the case of time-dependent, contingent cash flows. European Journal of Operational Research, 96(1), 90-96.
Hartmann, S. (2001). Project scheduling with multiple modes: a genetic algorithm. Annals of Operations Research, 102(1-4), 111-135.
Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 207(1), 1-14.
Icmeli, O., & Erenguc, S. S. (1994). A tabu search procedure for the resource constrained project scheduling problem with discounted cash flows. Computers & operations research, 21(8), 841-853.
Icmeli, O., Erenguc, S. S., & Zappe, C. J. (1993). Project scheduling problems: a survey. International Journal of Operations & Production Management, 13(11), 80-91.
Jarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation, 195(1), 299-308.
Ke, H., & Liu, B. (2010). Fuzzy project scheduling problem and its hybrid intelligent algorithm. Applied Mathematical Modelling, 34(2), 301-308.
Kelley, J. E. (1963). The critical-path method: Resources planning and scheduling. Industrial scheduling, 13, 347-365.
Kim, K., Yun, Y., Yoon, J., Gen, M., & Yamazaki, G. (2005). Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple project scheduling. Computers in industry, 56(2), 143-160.
Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research, 90(2), 320-333.
Kolisch, R., & Drexl, A. (1997). Local search for nonpreemptive multi-mode resource-constrained project scheduling. IIE transactions, 29(11), 987-999.
Laslo, Z. (2010). Project portfolio management: An integrated method for resource planning and scheduling to minimize planning/scheduling-dependent expenses. International Journal of Project Management, 28(6), 609-618.
Lee, C.-Y., & Lei, L. (2001). Multiple-project scheduling with controllable project duration and hard resource constraint: some solvable cases. Annals of Operations Research, 102(1-4), 287-307.
Lova, A., & Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling. Annals of Operations Research, 102(1-4), 263-286.
Mika, M., Waligóra, G., & Węglarz, J. (2005). Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models. European Journal of Operational Research, 164(3), 639-668.
Peteghem, V. V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409-418.
Russell, A. (1970). Cash flows in networks. Management Science, 16(5), 357-373.
Seifi, M., & Tavakkoli-Moghaddam, R. (2008). A new bi-objective model for a multi-mode resource-constrained project scheduling problem with discounted cash flows and four payment models. Int. J. of Engineering, Transaction A: Basic, 21(4), 347-360.
Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest memory requirements. Management Science, 46(5), 710-723.
Sung, C., & Lim, S. (1994). A project activity scheduling problem with net present value measure. International Journal of Production Economics, 37(2), 177-187.
Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. Management Science, 28(10), 1197-1210.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97(2), 227-240.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006). The trade-off between stability and makespan in resource-constrained project scheduling. International Journal of Production Research, 44(2), 215-236.
Węglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2011). Project scheduling with finite or infinite number of activity processing modes–A survey. European Journal of Operational Research, 208(3), 177-205.
Yan, L., Jinsong, B., Xiaofeng, H., & Ye, J. (2009). A heuristic project scheduling approach for quick response to maritime disaster rescue. International Journal of Project Management, 27(6), 620-628.
Yang, K. K., Talbot, F. B., & Patterson, J. H. (1993). Scheduling a project to maximize its net present value: an integer programming approach. European Journal of Operational Research, 64(2), 188-198.
Yu, L., Wang, S., Wen, F., & Lai, K. K. (2012). Genetic algorithm-based multi-criteria project portfolio selection. Annals of Operations Research, 197(1), 71-86.
Zhou, M., & Askin, R. G. (1998). Formation of general GT cells: an operation-based approach. Computers & industrial engineering, 34(1), 147-157.
Zhu, D., & Padman, R. (1999). A metaheuristic scheduling procedure for resource‐constrained projects with cash flows. Naval Research Logistics (NRL), 46(8), 912-927.
Achuthan, N., & Hardjawidjaja, A. (2001). Project scheduling under time dependent costs–A branch and bound algorithm. Annals of Operations Research, 108(1-4), 55-74.
Alcaraz, J., & Maroto, C. (2001). A robust genetic algorithm for resource allocation in project scheduling. Annals of Operations Research, 102(1-4), 83-109.
Ballestín, F., Valls, V., & Quintanilla, S. (2008). Pre-emption in resource-constrained project scheduling. European Journal of Operational Research, 189(3), 1136-1152.
Baroum, S. M., & Patterson, J. H. (1999). An exact solution procedure for maximizing the net present value of cash flows in a network Project Scheduling (pp. 107-134): Springer.
Buddhakulsomsiri, J., & Kim, D. S. (2006). Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Operational Research, 175(1), 279-295.
Castejón-Limas, M., Ordieres-Meré, J., González-Marcos, A., & González-Castro, V. (2011). Effort estimates through project complexity. Annals of Operations Research, 186(1), 395-406.
Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & industrial engineering, 55(1), 183-194.
Damay, J., Quilliot, A., & Sanlaville, E. (2007). Linear programming based algorithms for preemptive and non-preemptive RCPSP. European Journal of Operational Research, 182(3), 1012-1022.
De Reyck, B. (1998). A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 111(1), 152-174.
Delgoshaei, A., Ariffin, M. K., Baharudin, B. H. T. B., & Leman, Z. (2014). A Backward Approach for Maximizing Net Present Value of Multi-mode Pre-emptive Resource-Constrained Project Scheduling Problem with Discounted Cash Flows Using Simulated Annealing Algorithm. International Journal of Industrial Engineering and Management, 5(3), 151-158.
Delgoshaei, A., Ariffin, M. K. M., Baharudin, B. H. T. B., & Leman, Z. (2015). Minimizing makespan of a resource-constrained scheduling problem: A hybrid greedy and genetic algorithms. Resource.
Demeulemeester, E. L., & Herroelen, W. S. (1996). An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem. European Journal of Operational Research, 90(2), 334-348.
Elmaghraby, S. E., & Herroelen, W. S. (1990). The scheduling of activities to maximize the net present value of projects. European Journal of Operational Research, 49(1), 35-49.
Etgar, R., Shtub, A., & LeBlanc, L. J. (1997). Scheduling projects to maximize net present value—the case of time-dependent, contingent cash flows. European Journal of Operational Research, 96(1), 90-96.
Hartmann, S. (2001). Project scheduling with multiple modes: a genetic algorithm. Annals of Operations Research, 102(1-4), 111-135.
Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 207(1), 1-14.
Icmeli, O., & Erenguc, S. S. (1994). A tabu search procedure for the resource constrained project scheduling problem with discounted cash flows. Computers & operations research, 21(8), 841-853.
Icmeli, O., Erenguc, S. S., & Zappe, C. J. (1993). Project scheduling problems: a survey. International Journal of Operations & Production Management, 13(11), 80-91.
Jarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation, 195(1), 299-308.
Ke, H., & Liu, B. (2010). Fuzzy project scheduling problem and its hybrid intelligent algorithm. Applied Mathematical Modelling, 34(2), 301-308.
Kelley, J. E. (1963). The critical-path method: Resources planning and scheduling. Industrial scheduling, 13, 347-365.
Kim, K., Yun, Y., Yoon, J., Gen, M., & Yamazaki, G. (2005). Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple project scheduling. Computers in industry, 56(2), 143-160.
Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research, 90(2), 320-333.
Kolisch, R., & Drexl, A. (1997). Local search for nonpreemptive multi-mode resource-constrained project scheduling. IIE transactions, 29(11), 987-999.
Laslo, Z. (2010). Project portfolio management: An integrated method for resource planning and scheduling to minimize planning/scheduling-dependent expenses. International Journal of Project Management, 28(6), 609-618.
Lee, C.-Y., & Lei, L. (2001). Multiple-project scheduling with controllable project duration and hard resource constraint: some solvable cases. Annals of Operations Research, 102(1-4), 287-307.
Lova, A., & Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling. Annals of Operations Research, 102(1-4), 263-286.
Mika, M., Waligóra, G., & Węglarz, J. (2005). Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models. European Journal of Operational Research, 164(3), 639-668.
Peteghem, V. V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409-418.
Russell, A. (1970). Cash flows in networks. Management Science, 16(5), 357-373.
Seifi, M., & Tavakkoli-Moghaddam, R. (2008). A new bi-objective model for a multi-mode resource-constrained project scheduling problem with discounted cash flows and four payment models. Int. J. of Engineering, Transaction A: Basic, 21(4), 347-360.
Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest memory requirements. Management Science, 46(5), 710-723.
Sung, C., & Lim, S. (1994). A project activity scheduling problem with net present value measure. International Journal of Production Economics, 37(2), 177-187.
Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. Management Science, 28(10), 1197-1210.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97(2), 227-240.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006). The trade-off between stability and makespan in resource-constrained project scheduling. International Journal of Production Research, 44(2), 215-236.
Węglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2011). Project scheduling with finite or infinite number of activity processing modes–A survey. European Journal of Operational Research, 208(3), 177-205.
Yan, L., Jinsong, B., Xiaofeng, H., & Ye, J. (2009). A heuristic project scheduling approach for quick response to maritime disaster rescue. International Journal of Project Management, 27(6), 620-628.
Yang, K. K., Talbot, F. B., & Patterson, J. H. (1993). Scheduling a project to maximize its net present value: an integer programming approach. European Journal of Operational Research, 64(2), 188-198.
Yu, L., Wang, S., Wen, F., & Lai, K. K. (2012). Genetic algorithm-based multi-criteria project portfolio selection. Annals of Operations Research, 197(1), 71-86.
Zhou, M., & Askin, R. G. (1998). Formation of general GT cells: an operation-based approach. Computers & industrial engineering, 34(1), 147-157.
Zhu, D., & Padman, R. (1999). A metaheuristic scheduling procedure for resource‐constrained projects with cash flows. Naval Research Logistics (NRL), 46(8), 912-927.