How to cite this paper
Miguel, F., Frutos, M., Tohmé, F & Méndez, M. (2016). Integrating packing and distribution problems and optimization through mathematical programming.Decision Science Letters , 5(2), 317-326.
Refrences
Baumgartner, L., Schmid, V., & Blum, C. (2011, January). Solving the Two-Dimensional Bin Packing Problem with a Probabilistic Multi-start Heuristic. InLION (pp. 76-90).
Bennell, J. A., Lee, L. S., & Potts, C. N. (2013). A genetic algorithm for two-dimensional bin packing with due dates. International Journal of Production Economics, 145(2), 547-560.
Br?ysy, O. (2003). A reactive variable neighborhood search for the vehicle-routing problem with time windows. INFORMS Journal on Computing, 15(4), 347-368.
Escobar, J. W., Linfati, R., Toth, P., & Baldoquin, M. G. (2014). A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem.Journal of Heuristics, 20(5), 483-509.
Frutos, M., & Tohmé, F. (2012). A New Approach to the Optimization of the CVRP through Genetic Algorithms. American Journal of Operations Research,2(04), 495.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Publishing Company, Inc.
Iori, M., Salazar-Gonz?lez, J. J., & Vigo, D. (2007). An exact approach for the vehicle routing problem with two-dimensional loading constraints.Transportation Science, 41(2), 253-264.
Kallehauge, B., Larsen, J., & Madsen, O. B. (2006). Lagrangian duality applied to the vehicle routing problem with time windows. Computers & Operations Research, 33(5), 1464-1487.
Kao, Y., & Chen, M. (2013). Solving the CVRP Problem Using a Hybrid PSO Approach. In Computational Intelligence (pp. 59-67). Springer Berlin Heidelberg.
Kok, A. L., Meyer, C. M., Kopfer, H., & Schutten, J. M. J. (2010). A dynamic programming heuristic for the vehicle routing problem with time windows and European Community social legislation. Transportation Science, 44(4), 442-454.
Lodi, A., Martello, S., & Vigo, D. (2002). Recent advances on two-dimensional bin packing problems. Discrete Applied Mathematics, 123(1), 379-396.
Ma, R., D?sa, G., Han, X., Ting, H. F., Ye, D., & Zhang, Y. (2013). A note on a selfish bin packing problem. Journal of Global Optimization, 56(4), 1457-1462.
Mula, J., Peidro, D., D?az-Madro?ero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning.European Journal of Operational Research, 204(3), 377-390.
Oyola, J., & L?kketangen, A. (2014). GRASP-ASP: An algorithm for the CVRP with route balancing. Journal of Heuristics, 20(4), 361-382.
Sitek, P. (2014). A hybrid approach to the two-echelon capacitated vehicle routing problem (2E-CVRP). In Recent Advances in Automation, Robotics and Measuring Techniques (pp. 251-263). Springer International Publishing.
Theys, C., Br?ysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755-763.
Bennell, J. A., Lee, L. S., & Potts, C. N. (2013). A genetic algorithm for two-dimensional bin packing with due dates. International Journal of Production Economics, 145(2), 547-560.
Br?ysy, O. (2003). A reactive variable neighborhood search for the vehicle-routing problem with time windows. INFORMS Journal on Computing, 15(4), 347-368.
Escobar, J. W., Linfati, R., Toth, P., & Baldoquin, M. G. (2014). A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem.Journal of Heuristics, 20(5), 483-509.
Frutos, M., & Tohmé, F. (2012). A New Approach to the Optimization of the CVRP through Genetic Algorithms. American Journal of Operations Research,2(04), 495.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Publishing Company, Inc.
Iori, M., Salazar-Gonz?lez, J. J., & Vigo, D. (2007). An exact approach for the vehicle routing problem with two-dimensional loading constraints.Transportation Science, 41(2), 253-264.
Kallehauge, B., Larsen, J., & Madsen, O. B. (2006). Lagrangian duality applied to the vehicle routing problem with time windows. Computers & Operations Research, 33(5), 1464-1487.
Kao, Y., & Chen, M. (2013). Solving the CVRP Problem Using a Hybrid PSO Approach. In Computational Intelligence (pp. 59-67). Springer Berlin Heidelberg.
Kok, A. L., Meyer, C. M., Kopfer, H., & Schutten, J. M. J. (2010). A dynamic programming heuristic for the vehicle routing problem with time windows and European Community social legislation. Transportation Science, 44(4), 442-454.
Lodi, A., Martello, S., & Vigo, D. (2002). Recent advances on two-dimensional bin packing problems. Discrete Applied Mathematics, 123(1), 379-396.
Ma, R., D?sa, G., Han, X., Ting, H. F., Ye, D., & Zhang, Y. (2013). A note on a selfish bin packing problem. Journal of Global Optimization, 56(4), 1457-1462.
Mula, J., Peidro, D., D?az-Madro?ero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning.European Journal of Operational Research, 204(3), 377-390.
Oyola, J., & L?kketangen, A. (2014). GRASP-ASP: An algorithm for the CVRP with route balancing. Journal of Heuristics, 20(4), 361-382.
Sitek, P. (2014). A hybrid approach to the two-echelon capacitated vehicle routing problem (2E-CVRP). In Recent Advances in Automation, Robotics and Measuring Techniques (pp. 251-263). Springer International Publishing.
Theys, C., Br?ysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755-763.