How to cite this paper
Bolaños, R., Echeverry, M & Escobar, J. (2015). A multiobjective non-dominated sorting genetic algorithm (NSGA-II) for the Multiple Traveling Salesman Problem.Decision Science Letters , 4(4), 559-568.
Refrences
Bektas, T. (2006). The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega, 34(3), 209-219.
Chang, T. S., & Yen, H. M. (2012). City-courier routing and scheduling problems. European Journal of Operational Research, 223(2), 489-498.
Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling salesman problem (No. RR-388). Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
Escobar, J. W., Linfati, R., & Toth, P. (2013). A two-phase hybrid heuristic algorithm for the capacitated location-routing problem. Computers & Operations Research, 40(1), 70-79.
Gavish, B., & Srikanth, K. (1986). An optimal solution method for large-scale multiple traveling salesmen problems. Operations Research, 34(5), 698-717.
Goldberg, D. E., & Lingle, R. (1985, July). Alleles, loci, and the traveling salesman problem. In Proceedings of the first international conference on genetic algorithms and their applications (pp. 154-159). Lawrence Erlbaum Associates, Publishers.
Hong, S., & Padberg, M. W. (1977). Technical Note—A Note on the Symmetric Multiple Traveling Salesman Problem with Fixed Charges. Operations Research, 25(5), 871-874.
Hou, M., & Liu, D. (2012). A novel method for solving the multiple traveling salesmen problem with multiple depots. Chinese science bulletin, 57(15), 1886-1892.
Jonker, R., & Volgenant, T. (1988). Technical Note—An Improved Transformation of the Symmetric Multiple Traveling Salesman Problem.Operations Research, 36(1), 163-167.
Junjie, P., & Dingwei, W. (2006, August). An ant colony optimization algorithm for multiple travelling salesman problem. In Innovative Computing, Information and Control, 2006. ICICIC & apos; 06. First International Conference on (Vol. 1, pp. 210-213). IEEE.
Kergosien, Y., Lenté, C., & Billaut, J. C. (2009, August). Home health care problem: An extended multiple traveling salesman problem. In 4th Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA & apos; 09), Dublin (Irlande) (pp. 10-12).
Kir?ly, A., & Abonyi, J. (2011). Optimization of multiple traveling salesmen problem by a novel representation based genetic algorithm. In Intelligent Computational Optimization in Engineering (pp. 241-269). Springer Berlin Heidelberg.
Labadie, N., Melechovsky, J., & Prins, C. (2014). An Evolutionary Algorithm with Path Relinking for a Bi-objective Multiple Traveling Salesman Problem with Profits. In Applications of Multi-Criteria and Game Theory Approaches (pp. 195-223). Springer London.
Laporte, G., & Nobert, Y. (1980). A cutting planes algorithm for the m-salesmen problem. Journal of the Operational Research Society, 31(11), 1017-1023.
Levin, A., & Yovel, U. (2014). Local search algorithms for multiple-depot vehicle routing and for multiple traveling salesman problems with proved performance guarantees. Journal of Combinatorial Optimization, 28(4), 726-747.
Oliver, I. M., Smith, D., & Holland, J. R. (1987). Study of permutation crossover operators on the traveling salesman problem. In Genetic algorithms and their applications: proceedings of the second International Conference on Genetic Algorithms: July 28-31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA.
Rao, M. (1980). A note on the multiple traveling salesman problem. Operations Research, 28 (3), 628–632.
Reinelt, G. (2014). TSPLIB is a library of sample instances for the TSP (and related problems) from various sources and of various types. Available on-line at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
Shim, V. A., Tan, K. C., & Tan, K. K. (2012, June). A hybrid estimation of distribution algorithm for solving the multi-objective multiple traveling salesman problem. In Evolutionary Computation (CEC), 2012 IEEE Congress on (pp. 1-8). IEEE. ?
Sofge, D., Schultz, A., & De Jong, K. (2002). Evolutionary computational approaches to solving the multiple traveling salesman problem using a neighborhood attractor schema. In Applications of Evolutionary Computing (pp. 153-162). Springer Berlin Heidelberg.
Syswerda, G. (1991). Schedule optimization using genetic algorithms.Handbook of genetic algorithms, 332–349.?
Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex. European Journal of Operational Research, 124(2), 267-282. ?
Yu, Q., Wang, D., Lin, D., Li, Y., & Wu, C. (2012). A novel two-level hybrid algorithm for multiple traveling salesman problems. In Advances in Swarm Intelligence (pp. 497-503). Springer Berlin Heidelberg. ?
Zhao, F., Dong, J., Li, S., & Yang, X. (2008, July). An improved genetic algorithm for the multiple traveling salesman problem. In Control and Decision Conference, 2008. CCDC 2008. Chinese (pp. 1935-1939). IEEE.
Chang, T. S., & Yen, H. M. (2012). City-courier routing and scheduling problems. European Journal of Operational Research, 223(2), 489-498.
Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling salesman problem (No. RR-388). Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
Escobar, J. W., Linfati, R., & Toth, P. (2013). A two-phase hybrid heuristic algorithm for the capacitated location-routing problem. Computers & Operations Research, 40(1), 70-79.
Gavish, B., & Srikanth, K. (1986). An optimal solution method for large-scale multiple traveling salesmen problems. Operations Research, 34(5), 698-717.
Goldberg, D. E., & Lingle, R. (1985, July). Alleles, loci, and the traveling salesman problem. In Proceedings of the first international conference on genetic algorithms and their applications (pp. 154-159). Lawrence Erlbaum Associates, Publishers.
Hong, S., & Padberg, M. W. (1977). Technical Note—A Note on the Symmetric Multiple Traveling Salesman Problem with Fixed Charges. Operations Research, 25(5), 871-874.
Hou, M., & Liu, D. (2012). A novel method for solving the multiple traveling salesmen problem with multiple depots. Chinese science bulletin, 57(15), 1886-1892.
Jonker, R., & Volgenant, T. (1988). Technical Note—An Improved Transformation of the Symmetric Multiple Traveling Salesman Problem.Operations Research, 36(1), 163-167.
Junjie, P., & Dingwei, W. (2006, August). An ant colony optimization algorithm for multiple travelling salesman problem. In Innovative Computing, Information and Control, 2006. ICICIC & apos; 06. First International Conference on (Vol. 1, pp. 210-213). IEEE.
Kergosien, Y., Lenté, C., & Billaut, J. C. (2009, August). Home health care problem: An extended multiple traveling salesman problem. In 4th Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA & apos; 09), Dublin (Irlande) (pp. 10-12).
Kir?ly, A., & Abonyi, J. (2011). Optimization of multiple traveling salesmen problem by a novel representation based genetic algorithm. In Intelligent Computational Optimization in Engineering (pp. 241-269). Springer Berlin Heidelberg.
Labadie, N., Melechovsky, J., & Prins, C. (2014). An Evolutionary Algorithm with Path Relinking for a Bi-objective Multiple Traveling Salesman Problem with Profits. In Applications of Multi-Criteria and Game Theory Approaches (pp. 195-223). Springer London.
Laporte, G., & Nobert, Y. (1980). A cutting planes algorithm for the m-salesmen problem. Journal of the Operational Research Society, 31(11), 1017-1023.
Levin, A., & Yovel, U. (2014). Local search algorithms for multiple-depot vehicle routing and for multiple traveling salesman problems with proved performance guarantees. Journal of Combinatorial Optimization, 28(4), 726-747.
Oliver, I. M., Smith, D., & Holland, J. R. (1987). Study of permutation crossover operators on the traveling salesman problem. In Genetic algorithms and their applications: proceedings of the second International Conference on Genetic Algorithms: July 28-31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA.
Rao, M. (1980). A note on the multiple traveling salesman problem. Operations Research, 28 (3), 628–632.
Reinelt, G. (2014). TSPLIB is a library of sample instances for the TSP (and related problems) from various sources and of various types. Available on-line at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
Shim, V. A., Tan, K. C., & Tan, K. K. (2012, June). A hybrid estimation of distribution algorithm for solving the multi-objective multiple traveling salesman problem. In Evolutionary Computation (CEC), 2012 IEEE Congress on (pp. 1-8). IEEE. ?
Sofge, D., Schultz, A., & De Jong, K. (2002). Evolutionary computational approaches to solving the multiple traveling salesman problem using a neighborhood attractor schema. In Applications of Evolutionary Computing (pp. 153-162). Springer Berlin Heidelberg.
Syswerda, G. (1991). Schedule optimization using genetic algorithms.Handbook of genetic algorithms, 332–349.?
Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex. European Journal of Operational Research, 124(2), 267-282. ?
Yu, Q., Wang, D., Lin, D., Li, Y., & Wu, C. (2012). A novel two-level hybrid algorithm for multiple traveling salesman problems. In Advances in Swarm Intelligence (pp. 497-503). Springer Berlin Heidelberg. ?
Zhao, F., Dong, J., Li, S., & Yang, X. (2008, July). An improved genetic algorithm for the multiple traveling salesman problem. In Control and Decision Conference, 2008. CCDC 2008. Chinese (pp. 1935-1939). IEEE.