How to cite this paper
Ghaedi, P & Harounabadi, A. (2014). Identifying spam e-mail messages using an intelligence algorithm.Decision Science Letters , 3(3), 439-444.
Refrences
Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Sakkis, G., Spyropoulos, C. D., & Stamatopoulos, P. (2000). Learning to filter spam e-mail: A comparison of a naive bayesian and a memory-based approach. arXiv preprint cs/0009009.
Ayodele, T., Zhou, S., & Khusaino, R. (2010). Email classification using back propagation technique. International Journal of Intelligent Computing Research(IJICR), 1(1/2), 3-9.
Banday, M. T., & Jan, T. R. (2009). Effectiveness and limitations of statistical spam filters. arXiv preprint arXiv:0910.2540.
Chakraborty, N., & Patel, A. (2012). Email spam filter using Bayesian neural networks. International Journal of Advanced Computer Research, 2(1), 65.
Hameed, S. M., & Mohammed, N. J. (2013). A content based spam filtering using optical back propagation technique. International Journal of Application or Innovation in Engineering and Management (IJAIEM), 2(7), 416-421.
Jaffar Gholi Beyk, A. (2012). Machine learning method in detecting spams with content value approach. Master of Science Research, Computer College, Azad University Dezful Branch.
Lazzari, L., Mari, M., & Poggi, A. (2005, June). Cafe-collaborative agents for filtering e-mails. In Enabling Technologies: Infrastructure for Collaborative Enterprise, 2005. 14th IEEE International Workshops on (pp. 356-361). IEEE.
Nazirova, S. (2011). Survey on Spam Filtering Techniques. Communications and Network, 3(3), 153-160.
Ndumiyana, D., Magomelo, M., Sakala, L. (2013). Spam detection using a Neural Network classifier. Online Journal of Physical and Environmental Science Research, 2(2), 28-37.
Nosseir, A., Nagati, K., & Taj-Eddin, I. (2013). Intelligent word-based spam filter detection using multi-neural networks. International Journal of Computer Science Issues, 10(2), 17-21.
Olawale Sulaimon, O. (2011). E-mail spam: Challenges and filtering techniques. Bachelor Thesis, Tornio, Kemi-Tornio University of Applied Sciences.
Tak, G. K., & Tapaswi, S. (2010). Query Based approach towards spam attacks using artificial neural network. International Journal of Artificial Intelligence & Applications, 1(4). 82-99.
Ayodele, T., Zhou, S., & Khusaino, R. (2010). Email classification using back propagation technique. International Journal of Intelligent Computing Research(IJICR), 1(1/2), 3-9.
Banday, M. T., & Jan, T. R. (2009). Effectiveness and limitations of statistical spam filters. arXiv preprint arXiv:0910.2540.
Chakraborty, N., & Patel, A. (2012). Email spam filter using Bayesian neural networks. International Journal of Advanced Computer Research, 2(1), 65.
Hameed, S. M., & Mohammed, N. J. (2013). A content based spam filtering using optical back propagation technique. International Journal of Application or Innovation in Engineering and Management (IJAIEM), 2(7), 416-421.
Jaffar Gholi Beyk, A. (2012). Machine learning method in detecting spams with content value approach. Master of Science Research, Computer College, Azad University Dezful Branch.
Lazzari, L., Mari, M., & Poggi, A. (2005, June). Cafe-collaborative agents for filtering e-mails. In Enabling Technologies: Infrastructure for Collaborative Enterprise, 2005. 14th IEEE International Workshops on (pp. 356-361). IEEE.
Nazirova, S. (2011). Survey on Spam Filtering Techniques. Communications and Network, 3(3), 153-160.
Ndumiyana, D., Magomelo, M., Sakala, L. (2013). Spam detection using a Neural Network classifier. Online Journal of Physical and Environmental Science Research, 2(2), 28-37.
Nosseir, A., Nagati, K., & Taj-Eddin, I. (2013). Intelligent word-based spam filter detection using multi-neural networks. International Journal of Computer Science Issues, 10(2), 17-21.
Olawale Sulaimon, O. (2011). E-mail spam: Challenges and filtering techniques. Bachelor Thesis, Tornio, Kemi-Tornio University of Applied Sciences.
Tak, G. K., & Tapaswi, S. (2010). Query Based approach towards spam attacks using artificial neural network. International Journal of Artificial Intelligence & Applications, 1(4). 82-99.