How to cite this paper
Farughi, H., Khanlarzade, N & Yegane, B. (2014). Pricing and inventory control policy for non-instantaneous deteriorating items with time- and price-dependent demand and partial backlogging.Decision Science Letters , 3(3), 325-334.
Refrences
Abad, P. L. (1996). Optimal pricing and lot-sizing under conditions of perishability and partial backordering. Management Science, 42(8), 1093-1104.
Aggarwal, S. P., & Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46, 658-662.
Avinadav, T., Herbon, A., & Spiegel, U. (2013). Optimal inventory policy for a perishable item with demand function sensitive to price and time. International Journal of Production Economics, 144(2), 497-506.
Cai, G. G., Chiang, W. C., & Chen, X. (2011). Game theoretic pricing and ordering decisions with partial lost sales in two-stage supply chains.International Journal of Production Economics, 130(2), 175-185.
Chew, P.EK., Lee. C., Liu, R., Hong, K.S., & Zhang, A. (2014). Optimal dynamic pricing and ordering decisions for perishable products. International Journal of Production Economics, In press.
Chakrabarty, T., Giri, B. C., & Chaudhuri, K. S. (1998). An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: an extension of Philip & apos; s model. Computers & Operations Research, 25(7), 649-657.
Chang, H. J., & Dye, C. Y. (2001). An inventory model for deteriorating items with partial backlogging and permissible delay in payments. International Journal of Systems Science, 32(3), 345-352.
Chang, H. J., Hung, C. H., & Dye, C. Y. (2002). A finite time horizon inventory model with deterioration and time-value of money under the conditions of permissible delay in payments. International Journal of Systems Science,33(2), 141-151.
Chang, H. J., Teng, J. T., Ouyang, L. Y., & Dye, C. Y. (2006). Retailer’s optimal pricing and lot-sizing policies for deteriorating items with partial backlogging. European Journal of Operational Research, 168(1), 51-64.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions, 5(4), 323-326.
Dye, C. Y., Ouyang, L. Y., & Hsieh, T. P. (2007). Inventory and pricing strategies for deteriorating items with shortages: A discounted cash flow approach. Computers & Industrial Engineering, 52(1), 29-40.
Geetha, K. V., & Uthayakumar, R. (2010). Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. Journal of computational and applied mathematics, 233(10), 2492-2505.
Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of Industrial Engineering, 14(5), 238-243.
Hwang, H., & Shinn, S. W. (1997). Retailer & apos; s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers & Operations Research, 24(6), 539-547.
Jamal, A. M. M., Sarker, B. R., & Wang, S. (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of the Operational Research Society, 48, 826-833.
Misra, R.B. (1975). Optimum production lot size model for a system with deteriorating inventory, International Journal of production Research, 13(5), 495-505.
Mukhopadhyay, S., Mukherjee, R. N., & Chaudhuri, K. S. (2004). Joint pricing and ordering policy for a deteriorating inventory. Computers & Industrial Engineering, 47(4), 339-349.
Musa, A., & Sani, B. (2012). Inventory ordering policies of delayed deteriorating items under permissible delay in payments. International Journal of Production Economics, 136(1), 75-83.
Maihami, R., & Nakhai Kamalabadi, I. (2012). Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics,136(1), 116-122.
Philip, G. C. (1974). A generalized EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 6(2), 159-162.
Tadikamalla, P.R. (1978). An EOQ inventory model for items with Gamma distribution, AIIE Transactions 10, 108-112.
Wee, H.M. (1993). Economic production lot size model for deteriorating items with partial back-ordering. Computers and Industrial Engineering, 24(3), 449-458.
Wee, H. M. (1997). A replenishment policy for items with a price-dependent demand and a varying rate of deterioration. Production Planning & Control, 8(5), 494-499.
Aggarwal, S. P., & Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46, 658-662.
Avinadav, T., Herbon, A., & Spiegel, U. (2013). Optimal inventory policy for a perishable item with demand function sensitive to price and time. International Journal of Production Economics, 144(2), 497-506.
Cai, G. G., Chiang, W. C., & Chen, X. (2011). Game theoretic pricing and ordering decisions with partial lost sales in two-stage supply chains.International Journal of Production Economics, 130(2), 175-185.
Chew, P.EK., Lee. C., Liu, R., Hong, K.S., & Zhang, A. (2014). Optimal dynamic pricing and ordering decisions for perishable products. International Journal of Production Economics, In press.
Chakrabarty, T., Giri, B. C., & Chaudhuri, K. S. (1998). An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: an extension of Philip & apos; s model. Computers & Operations Research, 25(7), 649-657.
Chang, H. J., & Dye, C. Y. (2001). An inventory model for deteriorating items with partial backlogging and permissible delay in payments. International Journal of Systems Science, 32(3), 345-352.
Chang, H. J., Hung, C. H., & Dye, C. Y. (2002). A finite time horizon inventory model with deterioration and time-value of money under the conditions of permissible delay in payments. International Journal of Systems Science,33(2), 141-151.
Chang, H. J., Teng, J. T., Ouyang, L. Y., & Dye, C. Y. (2006). Retailer’s optimal pricing and lot-sizing policies for deteriorating items with partial backlogging. European Journal of Operational Research, 168(1), 51-64.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions, 5(4), 323-326.
Dye, C. Y., Ouyang, L. Y., & Hsieh, T. P. (2007). Inventory and pricing strategies for deteriorating items with shortages: A discounted cash flow approach. Computers & Industrial Engineering, 52(1), 29-40.
Geetha, K. V., & Uthayakumar, R. (2010). Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. Journal of computational and applied mathematics, 233(10), 2492-2505.
Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of Industrial Engineering, 14(5), 238-243.
Hwang, H., & Shinn, S. W. (1997). Retailer & apos; s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers & Operations Research, 24(6), 539-547.
Jamal, A. M. M., Sarker, B. R., & Wang, S. (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of the Operational Research Society, 48, 826-833.
Misra, R.B. (1975). Optimum production lot size model for a system with deteriorating inventory, International Journal of production Research, 13(5), 495-505.
Mukhopadhyay, S., Mukherjee, R. N., & Chaudhuri, K. S. (2004). Joint pricing and ordering policy for a deteriorating inventory. Computers & Industrial Engineering, 47(4), 339-349.
Musa, A., & Sani, B. (2012). Inventory ordering policies of delayed deteriorating items under permissible delay in payments. International Journal of Production Economics, 136(1), 75-83.
Maihami, R., & Nakhai Kamalabadi, I. (2012). Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics,136(1), 116-122.
Philip, G. C. (1974). A generalized EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 6(2), 159-162.
Tadikamalla, P.R. (1978). An EOQ inventory model for items with Gamma distribution, AIIE Transactions 10, 108-112.
Wee, H.M. (1993). Economic production lot size model for deteriorating items with partial back-ordering. Computers and Industrial Engineering, 24(3), 449-458.
Wee, H. M. (1997). A replenishment policy for items with a price-dependent demand and a varying rate of deterioration. Production Planning & Control, 8(5), 494-499.