How to cite this paper
Saradhi, C., Rani, G & Ven, P. (2025). Green approach: A simple one-pot synthesis of pyranopyrazoles scaffold.Current Chemistry Letters, 14(2), 381-388.
Refrences
1. Strecker A. (1850) Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Liebigs Ann. Chem., 75(1) 27-45. https://doi.org/10.1002/jlac.18500750103
2. Tryfon Z-T., Ajay L. C., and Alexander D. (2015) Multicomponent reactions, union of MCRs and beyond. The Chemical Record 15(5) 981-996. https://doi.org/10.1002/tcr.201500201
3. Zarganes-Tzitzikas T., and Dömling A. (2014) Modern multicomponent reactions for better drug syntheses. Org. Chem. Front., 1 834-837. https://doi.org/10.1039/C4QO00088A
4. Cores Á., Clerigué J., Orocio-Rodríguez E., and Menéndez J. C. (2022) Multicomponent Reactions for the synthesis of active pharmaceutical ingredients. Pharmaceuticals 15 1009. https://doi.org/10.3390/ph15081009
5. Younus H. A., Al-Rashida M., Hameed A., Uroos M., Salar U., Rana S., and Khan K. M. (2020) Multicomponent reactions (MCR) in medicinal chemistry: a patent review (2010-2020). Expert Opinion on Therapeutic Patents 31(3) 267-289. https://doi.org/10.1080/13543776.2021.1858797
6. Graziano G., Stefanachi A., Contino M., Prieto-Díaz R., Ligresti A., Kumar P., Scilimati A., Sotelo E., and Leonetti F. (2023) Multicomponent reaction-assisted drug discovery: A time- and cost-effective green approach speeding up identification and optimization of anticancer drugs. Int. J. Mol. Sci., 24 6581. https://doi.org/10.3390/ijms24076581
7. Graebin C. S., Ribeiro F. V., Rogério K. R., and Kümmerle A. E. (2019) Multicomponent reactions for the synthesis of bioactive compounds: A review. Curr Org. Synth., 16(6) 855-899. https://doi.org/10.2174/1570179416666190718153703
8. John S. E., Shivani G., and Nagula S. (2021) Recent advances in multi-component reactions and their mechanistic insights: a triennium review.
Org. Chem. Front., 8 4237-4287. https://doi.org/10.1039/D0QO01480J
9. Godsi M. Z., Moradi R., and Mahammadkhani L. (2019) Application of multicomponent reactions in the total synthesis of natural peptides. Arkivoc part i 18-40. https://doi.org/10.24820/ark.5550190.p010.779
10. Multicomponent reactions in the synthesis of heterocycles. (2017) Chem. Heterocycl. Comp., 53 381. https://doi.org/10.1007/s10593-017-2064-2
11. Yadav A. R., Katariya A. P., Kanagare A. B., Patil P. D. J., Tagad C. K., Dake S. A., and Nagwade P. A. (2024) Review on advancements of pyranopyrazole: synthetic routes and their medicinal applications. Mol. Divers., https://doi.org/10.1007/s11030-023-10757-w
12. Mamaghani M., and Nia, R. H. (2019) A review on the recent multicomponent synthesis of pyranopyrazoles. Polycyclic Aromatic Compounds 41(2) 223-291. https://doi.org/10.1080/10406638.2019.1584576
13. Ganta R. K., Kerru N., Maddila S., and Jonnalagadda S. B. (2021) Advances in pyranopyrazole scaffolds' syntheses using sustainable catalysts-A review. Molecules 26(11) 3270. https://doi.org/10.3390/molecules26113270
14. Nagarajan A. S., and Reddy B. S. R. (2009) Synthesis of substituted pyranopyrazoles under neat conditions via a multicomponent reaction. Synlett 12 2002-2004. https://doi.org/10.1055/s-0029-1217526
15. Biswas S. K., and Das D. (2022) One-pot synthesis of pyrano[2,3-c]pyrazole. derivatives via multicomponent reactions (MCRs) and their applications in medicinal chemistry. Mini Rev. Org. Chem., 19(5) 552-568. https://doi.org/10.2174/1570193X19666211220141622
16. Ahmad A., Rao S., and Shetty N. S. (2023) Green multicomponent synthesis of pyrano[2,3-c]pyrazole derivatives: current insights and future directions. RSC Adv., 13(41) 28798-28833. https://doi.org/10.1039/d3ra05570a
17. Sikandar S., and Zahoor A. F. (2021) Synthesis of pyrano[2,3-c]pyrazoles: A review. J. Heterocycl. Chem., 58(3) 685-705. https://doi.org/10.1002/jhet.4191
18. Letcy V. T., Savitha D. P., Deepa S., and Sreekumar K. (2021) Sustainable multicomponent one pot synthesis of pyranopyrazole derivatives in the presence of Lactic acid: Urea: NH4Cl, Current Research in Green and Sustainable Chemistry 4 100194. https://doi.org/10.1016/j.crgsc.2021.100194
19. Farooq S., and Ngaini Z. (2024) Recent synthesis of mono- & bis-pyranopyrazole derivatives. ChemistrySelect 9(8) e202400028. https://doi.org/10.1002/slct.202400028
20. Zolfigol M. A., Tavasoli M., Moosavi-Zare A. R., Moosavi P., Kruger H. G., Shiri, M., and Khakyzadeh V. (2013) Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst. RSC Adv., 3 25681-25685. https://doi.org/10.1039/C3RA45289A
21. Abhinav B., Dinesh C., Alpana A., Pratyush K., and Shrikant M. (2020) Green synthesis of pyranopyrazole using microwave assisted techniques. GSC Biological and Pharmaceutical Sciences 10(02) 111-119. https://doi.org/10.30574/gscbps.2020.10.2.0026
22. Nguyen H. T., Truong M-N. H., Le T. V., Vo N. T., Nguyen H. D., and Phuong H. T. (2022) A new pathway for the preparation of pyrano[2,3-c]pyrazoles and molecular docking as inhibitors of p38 MAP kinase. ACS Omega 7(20) 17432-17443. https://pubs.acs.org/doi/10.1021/acsomega.2c01814
23. Hanuman D. B., Dattatraya N. P., Ajit K. D., and Rajita D. I. (2024) A facile single-pot synthesis of pyranopyrazoles scaffold as a green approach. Rasayan J. Chem., 17(3) 855-860. http://doi.org/10.31788/RJC.2024.1738818
24. Noory Fajer A., Khabt Aboud H., Al-Bahrani H. A., and Kazemi M. (2023) Recent advances on multicomponent synthesis of pyranopyrazoles using magnetically recoverable nanocatalysts. Polycyclic Aromatic Compounds 44(7) 4932-4978. https://doi.org/10.1080/10406638.2023.2255723
25. Shrivas P., Pandey R., Zodape S., Wankhade A., and Pratap U. (2020) Green synthesis of pyranopyrazoles via biocatalytic one-pot Knoevenagel condensation–Michael-type addition–heterocyclization cascade in non-aqueous media. Res. Chem. Intermed., 46 2805-2816. https://doi.org/10.1007/s11164-020-04122-x
26. Cahyana A. H., and Mufidah A. (2021) Synthesis of pyranopyrazole derivative compounds with nano-Fe3O4 catalyst. AIP Conf. Proc. 2374 040001. https://doi.org/10.1063/5.0060453
27. Khan Md. M., Singh B., Arif A., Saigal., and Sahoo S. C. (2024) Organobase catalyzed synthesis of pyranopyrazoles with X-ray crystallography, docking and ADME studies. Tetrahedron Green Chem., 4 100050. https://doi.org/10.1016/j.tgchem.2024.100050
28. Dehghani T. A., Mirjalili B. B. F., Bamoniri A., and Salehi N. (2021) Rapid four-component synthesis of dihydropyrano[2,3-c]pyrazoles using nano-eggshell/Ti(IV) as a highly compatible natural based catalyst. BMC Chemistry, 15 6. https://doi.org/10.1186/s13065-021-00734-5
29. Aliabadi R. S., and Mahmoodi N. O. (2016) Green and efficient synthesis of pyranopyrazoles using [bmim][OH−] as an ionic liquid catalyst in water under microwave irradiation and investigation of their antioxidant activity. RSC Adv., 6 85877-85884. https://doi.org/10.1039/C6RA17594E
30. Chavan H. V., Babar, S. B., Hoval R. U., and Bandgar, B. P. (2011) Rapid one-pot, four component synthesis of pyranopyrazoles using heteropolyacid under solvent-free condition. Bull. Korean Chem. Soc., 32(11) 3963-3966. https://doi.org/10.5012/bkcs.2011.32.11.3963
31. Kiyani H., Samimi H. A., Ghorbani F., and Esmaieli S. (2013) One-pot, four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium. Curr. Chem. Lett., 2 197-206. https://doi.org/10.5267/j.ccl.2013.07.002
32. Patil K., and Helavi V. (2018) Synthesis of pyranopyrazoles by using chitosan hydrogel as a green and recyclable catalyst. Asian J. Research Chem., 11(2) 477-484. https://doi.org/10.5958/0974-4150.2018.00087.1
33. Sharma A., Chowdhury R., Dash S., Pallavi B., and Shukla, P. (2016) Fast microwave assisted synthesis of pyranopyrazole derivatives as new anticancer agents. Current Microwave Chemistry 3(1) 78-84. https://doi.org/10.2174/2213335602666150116233238
34. Neysi M., and Elhamifar D. (2023) H77j8 Yolk-shell structured magnetic mesoporous organosilica supported ionic liquid/Cu complex: an efficient nanocatalyst for the green synthesis of pyranopyrazoles. Front. Chem., 11 1235415. https://doi.org/10.3389/fchem.2023.1235415
35. Mohamadpour F. (2020) Catalyst-free green synthesis of dihydropyrano[2,3-c]pyrazole scaffolds assisted by ethylene glycol (E-G) as a reusable and biodegradable solvent medium. J. Chem. Sci., 132 72. https://doi.org/10.1007/s12039-020-01775-4
36. Kamalzare M., Ahghari M. R., Bayat M., and Maleki A. (2021) Fe3O4@chitosan-tannic acid bionanocomposite as a novel nanocatalyst for the synthesis of pyranopyrazoles. Sci. Rep., 11 20021. https://doi.org/10.1038/s41598-021-99121-2
37. Al-Amiery A. A., Al-Bayati R. I., Saed F.M., Ali W. B., Kadhum A. A. H., and Mohamad A. B. (2012) Novel pyranopyrazoles: Synthesis and theoretical studies. Molecules 17 10377-10389. https://doi.org/10.3390/molecules170910377
38. Khazaal S., and Ibraheam S. Y. (2022) One- pot synthesis of new pyranopyrazoles via domino multicomponent reaction. Egyptian Journal of Chemistry 65(10) 259-265. https://doi.org/10.21608/ejchem.2022.115337.5232
39. Sharma A., Pallavi B., Singh R. P., Jha P. N., and Shukla P. (2015) Novel grinding synthesis of pyranopyrazole analogues and their evaluation as antimicrobial agents. Heterocycles 91(8) 1615-1627. https://doi.org/10.3987/COM-15-13222
40. Mali G., Shaikh B. A., Garg S., Kumar A., Bhattacharyya S., Erande R. D., and Chate A. V. (2021) Design, synthesis, and biological evaluation of densely substituted dihydropyrano[2,3-c]pyrazoles via a taurine-catalyzed green multicomponent approach. ACS Omega 6(45) 30734-30742. https://doi.org/10.1021/acsomega.1c04773
41. Beiranvand M., and Habibi D. (2022) Design, preparation and application of the semicarbazide-pyridoyl-sulfonic acid-based nanocatalyst for the synthesis of pyranopyrazoles. Sci. Rep., 12 14347. https://doi.org/10.1038/s41598-022-18651-5
42. Barhoumi A., Ourhriss N., Belghiti M. E., Chafi M., Syed A., Eswaramoorthy R., Verma M., Zeroual A., Zawadzińska K., and Jasiński R. (2023) 3-Difluormethyl-5-carbomethoxy-2,4-pyrazole: Molecular mechanism of the formation and molecular docking study. Curr. Chem. Lett., 12 472-488. 10.5267/j.ccl.2023.3.008
43. Fryźlewicz A., Kącka-Zych A., Demchuk O. M., Mirosław B., Woliński P., and Jasiński R. (2021) Green synthesis of nitrocyclopropane-type precursors of inhibitors for the maturation of fruits and vegetables via domino reactions of diazoalkanes with 2-nitroprop-1-ene. J. Clean. Prod., 292 126079. https://doi.org/10.1016/j.jclepro.2021.126079
44. Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Łapczuk-Krygier A., Mirosław B., and Demchuk O. M. (2020) [3+2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct., 1203 127473. https://doi.org/10.1016/j.molstruc.2019.127473
45. Kula K., Łapczuk A., Sadowski M., Kras J., Zawadzińska K., Demchuk O. M., Gaurav G. K., Wróblewska A., and Jasiński R. (2022) On the question of the formation of nitro-functionalized 2,4-pyrazole analogs on the basis of nitrylimine molecular systems and 3,3,3-trichloro-1-nitroprop-1-ene. Molecules 27 8409. https://doi.org/10.3390/molecules27238409
46. Fryźlewicz A., Olszewska A., Zawadzińska K., Woliński P., Kula K., Kącka-Zych A., Łapczuk-Krygier A., and Jasiński R. (2022) On the mechanism of the synthesis of nitrofunctionalised Δ2-pyrazolines via [3+2] Cycloaddition reactions between α-EWG-activated nitroethenes and nitrylimine TAC Systems. Organics 3 59-76. https://doi.org/10.3390/org3010004
47. Alam M. M., Varala R., and Seema V. (2024) Zinc acetate in organic synthesis and catalysis: A review. Min. Rev. Org. Chem., 21 555-587. https://doi.org/10.2174/1570193X20666230507213511
48. Babu H. B., Varala R., and Alam M. M. (2022) Zn(OAc)2.2H2O-Catalyzed Betti base synthesis under solvent free conditions. Lett. Org. Chem., 19, 14-18. https://doi.org/10.2174/1570178618666210616155257
49. Reddy V. V. R., Saritha B., Ramu R., Varala R., and Jayashree, A. (2014) Zn(OAc)2.2H2O-catalyzed one-pot efficient synthesis of aminonitriles. Asian J. Chem., 26 7439-7442. https://doi.org/10.14233/ajchem.2014.17180
50. Ramu E., Varala R., Sreelatha N., and Adapa S. R. (2007) Zn(OAc)2·2H2O: A versatile catalyst for the one-pot synthesis of propargylamines. Tetrahedron Lett., 48 7184-7190. https://doi.org/10.1016/j.tetlet.2007.07.196
51. Kokane B. D., Varala R., and Patil S. G. (2022) Zn(OAc)2·2H2O: An efficient catalyst for the one-pot synthesis of 2-substituted benzothiazoles. Org. Commun., 15 378-385. https://doi.org/10.25135/acg.oc.140.2210.2618
52. Pulle J. S., Totawar P. R., and Varala R. (2023) Zn(OAc)2·2H2O-Catalyzed green synthesis of substituted 1-amido/thioamidoalkyl2-naphthols. Rev. Roum. Chim., 68 75-83. https://doi.org/10.33224/rrch.2023.68.1-2.07
53. Chinta B., Satyadev T. N. V. S. S., and Adilakshmi G. V. (2023) Zn(OAc)2•2H2O-catalyzed one-pot synthesis of divergently substituted imidazoles. Curr. Chem. Lett., 12 175-184. https://doi.org/10.5267/j.ccl.2023.3.005
54. Veni P. R. K., Saradhi Ch. V., and Rani G. U. (2024) Zn(OAc)2•2H2O-catalyzed synthesis of chromeno[2,3-d] pyrimidinones under solvent-free conditions. Curr. Chem. Lett., 13 677-682. https://doi.org/10.5267/j.ccl.2024.5.003