How to cite this paper
Kula, K., Łapczuk, A., Woliński, P & Sadowski, M. (2025). On the question of the correlation between kinetic Dimroth parameters and global electron density transfer in [4+2]-π-electron cycloaddition reactions.Current Chemistry Letters, 14(2), 265-270.
Refrences
(1) Prakash, C., Singh, R. (2024) Synthesis of Fluorinated Six-Membered Nitrogen Heterocycles Using Microwave Irradiation. Chem. Heterocycl. Compd., 60 (5–6), 216–229. https://doi.org/10.1007/s10593-024-03323-1.
(2) Zhilitskaya, L. V., Yarosh, N. O. (2024) The Synthesis of Salts of Five-Membered Heterocyclic Compounds Based on N-Containing Cations/Anions (Microreview). Chem. Heterocycl. Compd., 60 (5–6), 230–232. https://doi.org/10.1007/s10593-024-03324-0.
(3) Varala, R., Kurra, M., Amanullah, M., Hussien, M., Alam, M. M. (2024,) Recent Methods in the Synthesis of Chromeno[2,3-d]Pyrimidines. Chem. Heterocycl. Compd. 60 (3–4), 111–117. https://doi.org/10.1007/s10593-024-03302-6.
(4) Dotsenko, V. V., Sinotsko, A. E. (2024) The Synthesis and Properties of [1,2] Dithiolopyridine Derivatives (Microreview). Chem. Heterocycl. Compd., 60 (1–2), 32–34. https://doi.org/10.1007/s10593-024-03288-1.
(5) Chaban, T. I., Lelyukh, M. I., Chaban, I. H., Kasyanchuk, O. Y. (2024) Approaches to the Synthesis of Thiazolo[3,2-a]Pyridines (Microreview). Chem. Heterocycl. Compd., 60 (3–4), 124–126. https://doi.org/10.1007/s10593-024-03305-3.
(6) Jasiński, R. (2021) On the Question of Stepwise [4+2] Cycloaddition Reactions and Their Stereochemical Aspects. Symmetry (Basel)., 13 (10), 1911. https://doi.org/10.3390/sym13101911.
(7) Sadowski, M., Kula, K. (2024) Nitro-Functionalized Analogues of 1,3-Butadiene: An Overview of Characteristic, Synthesis, Chemical Transformations and Biological Activity. Curr. Chem. Lett., 13 (1), 15–30. https://doi.org/10.5267/j.ccl.2023.9.003.
(8) Jasiński, R., Dresler, E. (2020) On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions: A Critical Review. Organics, 1 (1), 49–69. https://doi.org/10.3390/org1010005.
(9) Domingo, L. R., Sáez, J. A. (2009) Understanding the Mechanism of Polar Diels–Alder Reactions. Org. Biomol. Chem., 7 (17), 3576. https://doi.org/10.1039/b909611f.
(10) Basavanna, V., Puttappa, S., Chandramouli, M., Ningaiah, S. (2023,) Green Synthetic Methods for the Cycloaddition Reactions: A Mini Review. Polycycl. Aromat. Compd. 43 (10), 9377–9398. https://doi.org/10.1080/10406638.2022.2162933.
(11) Huisgen, R. (1963) 1,3‐Dipolar Cycloadditions. Past and Future. Angew. Chemie Int. Ed. English, 2 (10), 565–598. https://doi.org/10.1002/anie.196305651.
(12) Huisgen, R., Mloston, G., Langhals, E. (1986) The First Two-Step 1,3-Dipolar Cycloadditions: Non-Stereospecificity. J. Am. Chem. Soc., 108 (20), 6401–6402. https://doi.org/10.1021/ja00280a053.
(13) Huisgen, R., Mloston, G., Langhals, E. (1986) The First Two-Step 1,3-Dipolar Cycloadditions: Interception of Intermediate. J. Org. Chem., 51 (21), 4085–4087. https://doi.org/10.1021/jo00371a039.
(14) Woliński, P., Kącka-Zych, A., Wróblewska, A., Wielgus, E., Dolot, R., Jasiński, R. (2023) Fully Selective Synthesis of Spirocyclic-1,2-Oxazine N-Oxides via Non-Catalysed Hetero Diels-Alder Reactions with the Participation of Cyanofunctionalysed Conjugated Nitroalkenes. Molecules, 28 (12), 4586. https://doi.org/10.3390/molecules28124586.
(15) Kula, K., Łapczuk, A., Sadowski, M., Kras, J., Zawadzińska, K., Demchuk, O. M., Gaurav, G. K., Wróblewska, A., Jasiński, R. (2022,) On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 27 (23), 8409. https://doi.org/10.3390/molecules27238409.
(16) Kula, K., Kącka-Zych, A., Łapczuk-Krygier, A., Jasiński, R. (2021) Analysis of the Possibility and Molecular Mechanism of Carbon Dioxide Consumption in the Diels-Alder Processes. Pure Appl. Chem., 93 (4), 427–446. https://doi.org/10.1515/pac-2020-1009.
(17) Fryźlewicz, A., Olszewska, A., Zawadzińska, K., Woliński, P., Kula, K., Kącka-Zych, A., Łapczuk-Krygier, A., Jasiński, R. (2022) On the Mechanism of the Synthesis of Nitrofunctionalised Δ2-Pyrazolines via [3+2] Cycloaddition Reactions between α-EWG-Activated Nitroethenes and Nitrylimine TAC Systems. Organics, 3 (1), 59–76. https://doi.org/10.3390/org3010004.
(18) Kącka-Zych, A., Pérez, P. (2021) Perfluorobicyclo[2.2.0]Hex-1(4)-Ene as Unique Partner for Diels–Alder Reactions with Benzene: A Density Functional Theory Study. Theor. Chem. Acc., 140 (2), 17. https://doi.org/10.1007/s00214-020-02709-6.
(19) Jasiński, R. (2020) A New Insight on the Molecular Mechanism of the Reaction between (Z)-C,N-Diphenylnitrone and 1,2-Bismethylene-3,3,4,4,5,5-Hexamethylcyclopentane. J. Mol. Graph. Model., 94. https://doi.org/10.1016/j.jmgm.2019.107461.
(20) Jasiński, R. (2016) A Reexamination of the Molecular Mechanism of the Diels–Alder Reaction between Tetrafluoroethene and Cyclopentadiene. React. Kinet. Mech. Catal., 119 (1), 49–57. https://doi.org/10.1007/s11144-016-1038-1.
(21) Reichardt, C. (1965) Empirical Parameters of the Polarity of Solvents. Angew. Chemie Int. Ed. English, 4 (1), 29–40. https://doi.org/10.1002/anie.196500291.
(22) Perrin, C. L., Agranat, I., Bagno, A., Braslavsky, S. E., Fernandes, P. A., Gal, J.-F., Lloyd-Jones, G. C., Mayr, H., Murdoch, J. R., Nudelman, N. S., Radom, L., Rappoport, Z., Ruasse, M.-F., Siehl, H.-U., Takeuchi, Y., Tidwell, T. T., Uggerud, E., Williams, I. H. Dimroth–Reichardt Et Parameter. IUPAC Standards Online. De Gruyter. https://doi.org/10.1515/iupac.94.0407.
(23) Tunuli, M. S., Rauf, M. A., Farhataziz. Dimroth’s ET(30) as Parameters of Solvent Polarity: A Caveat. J. Photochem. 1984, 24 (4), 411–413. https://doi.org/10.1016/0047-2670(84)80023-4.
(24) Domingo, L. R., Ríos-Gutiérrez, M. (2023) A Useful Classification of Organic Reactions Based on the Flux of the Electron Density. Sci. Radices, 2 (1), 1–24. https://doi.org/10.58332/scirad2023v2i1a01.
(25) Domingo, L. R. (2016) Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules, 21 (10), 1319. https://doi.org/10.3390/molecules21101319.
(26) Reed, A. E. (1985) Weinstock, R. B., Weinhold, F. Natural Population Analysis. J. Chem. Phys., 83 (2), 735–746. https://doi.org/10.1063/1.449486.
(27) Domingo, L. R. (2014) A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv., 4 (61), 32415–32428. https://doi.org/10.1039/C4RA04280H.
(28) Dresler, E., Woliński, P., Wróblewska, A., Jasiński, R. (2023) On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules, 28 (24), 8152. https://doi.org/10.3390/molecules28248152.
(29) Sadowski, M., Dresler, E., Zawadzińska, K., Wróblewska, A., Jasiński, R. (2024) Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study. Molecules, 29 (20), 4892. https://doi.org/10.3390/molecules29204892.
(30) Zawadzińska, K., Kula, K. (2021) Application of β-Phosphorylated Nitroethenes in [3+2] Cycloaddition Reactions Involving Benzonitrile N-Oxide in the Light of a DFT Computational Study. Organics, 2 (1), 26–37. https://doi.org/10.3390/org2010003.
(31) Łapczuk-Krygier, A., Jaśkowska, J., Jasiński, R. (2018) The Influence of Lewis Acid Catalyst on the Kinetic and Molecular Mechanism of Nitrous Acid Elimination from 5-Nitro-3-Phenyl-4,5-Dihydroisoxazole: DFT Computational Study. Chem. Heterocycl. Compd., 54 (12), 1172–1174. https://doi.org/10.1007/s10593-019-02410-y.
(32) Sadowski, M., Synkiewicz-Musialska, B., Kula, K. (2024,) (1E,3E)-1,4-Dinitro-1,3-Butadiene—Synthesis, Spectral Characteristics and Computational Study Based on MEDT, ADME and PASS Simulation. Molecules 29 (2), 542. https://doi.org/10.3390/molecules29020542.
(33) Sadowski, M., Kula, K. (2024) Unexpected Course of Reaction Between (1E,3E)-1,4-Dinitro-1,3-Butadiene and N-Methyl Azomethine Ylide—A Comprehensive Experimental and Quantum-Chemical Study. Molecules, 29 (21), 5066. https://doi.org/10.3390/molecules29215066.
(34) Jasiński, R., Mróz, K. (2015,) Kinetic Aspects of [3+2] Cycloaddition Reactions between (E)-3,3,3-Trichloro-1-Nitroprop-1-Ene and Ketonitrones. React. Kinet. Mech. Catal. 116 (1), 35–41. https://doi.org/10.1007/s11144-015-0882-8.
(35) Jasiński, R., Mróz, K., Kącka, (2016) A. Experimental and Theoretical DFT Study on Synthesis of Sterically Crowded 2,3,3,(4)5-Tetrasubstituted-4-Nitroisoxazolidines via 1,3-Dipolar Cycloaddition Reactions Between Ketonitrones and Conjugated Nitroalkenes. J. Heterocycl. Chem., 53 (5), 1424–1429. https://doi.org/10.1002/jhet.2442.
(36) Kwiatkowska, M. (2008) Stereochemiczne i Kinetyczne Studia [2+4] Cykloaddycji Cyklopentadienu Ze Sprzężonymi Nitroalkenami, Cracow University of Technology, PhD Thesis.
(37) Jasiński, R. (2004) Reakcje [2+3] Cykloaddycji Z-C,N-Difenylonitronu i C,C,N-Trifenylonitronu Ze Sprzężonymi Nitroalkenami, Politechnika Krakowska. PhD Thesis.
(38) Mikulska, M. (2015) Teoretyczne i Eksperymentalne Studia Reakcji [2+3] Cykloaddycji 1–Podstawionych Nitroetenów z (Z)–C,N–Diarylonitronami Oraz Termoliza Uzyskanych Adduktów, Cracow University of Technology, PhD Thesis.
(39) Jasiński, R., Kubik, M., Łapczuk-Krygier, A., Kącka, A., Dresler, E., (2014) Boguszewska-Czubara, A. An Experimental and Theoretical Study of the Hetero Diels–Alder Reactions between (E)-2-Aryl-1-Cyano-1-Nitroethenes and Ethyl Vinyl Ether: One-Step or Zwitterionic, Two-Step Mechanism? React. Kinet. Mech. Catal., 113 (2), 333–345. https://doi.org/10.1007/s11144-014-0753-8.
(40) Fringuelli, F., Matteucci, M., Piermatti, O., Pizzo, F., Burla, M. C. (2001) [4 + 2] Cycloadditions of Nitroalkenes in Water. Highly Asymmetric Synthesis of Functionalized Nitronates. J. Org. Chem., 66 (13), 4661–4666. https://doi.org/10.1021/jo010182v.
(41) Schwetlick, K. Kinetische Methoden Zur Untersuchung von Reaktionsmechanismen, VEB Deutscher Verlag der Wissens- chaften: Berlin, 1971.
(42) Reichardt, C., Welton, T. (2010) Solvents and Solvent Effects in Organic Chemistry, Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim,. https://doi.org/10.1002/9783527632220.
(2) Zhilitskaya, L. V., Yarosh, N. O. (2024) The Synthesis of Salts of Five-Membered Heterocyclic Compounds Based on N-Containing Cations/Anions (Microreview). Chem. Heterocycl. Compd., 60 (5–6), 230–232. https://doi.org/10.1007/s10593-024-03324-0.
(3) Varala, R., Kurra, M., Amanullah, M., Hussien, M., Alam, M. M. (2024,) Recent Methods in the Synthesis of Chromeno[2,3-d]Pyrimidines. Chem. Heterocycl. Compd. 60 (3–4), 111–117. https://doi.org/10.1007/s10593-024-03302-6.
(4) Dotsenko, V. V., Sinotsko, A. E. (2024) The Synthesis and Properties of [1,2] Dithiolopyridine Derivatives (Microreview). Chem. Heterocycl. Compd., 60 (1–2), 32–34. https://doi.org/10.1007/s10593-024-03288-1.
(5) Chaban, T. I., Lelyukh, M. I., Chaban, I. H., Kasyanchuk, O. Y. (2024) Approaches to the Synthesis of Thiazolo[3,2-a]Pyridines (Microreview). Chem. Heterocycl. Compd., 60 (3–4), 124–126. https://doi.org/10.1007/s10593-024-03305-3.
(6) Jasiński, R. (2021) On the Question of Stepwise [4+2] Cycloaddition Reactions and Their Stereochemical Aspects. Symmetry (Basel)., 13 (10), 1911. https://doi.org/10.3390/sym13101911.
(7) Sadowski, M., Kula, K. (2024) Nitro-Functionalized Analogues of 1,3-Butadiene: An Overview of Characteristic, Synthesis, Chemical Transformations and Biological Activity. Curr. Chem. Lett., 13 (1), 15–30. https://doi.org/10.5267/j.ccl.2023.9.003.
(8) Jasiński, R., Dresler, E. (2020) On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions: A Critical Review. Organics, 1 (1), 49–69. https://doi.org/10.3390/org1010005.
(9) Domingo, L. R., Sáez, J. A. (2009) Understanding the Mechanism of Polar Diels–Alder Reactions. Org. Biomol. Chem., 7 (17), 3576. https://doi.org/10.1039/b909611f.
(10) Basavanna, V., Puttappa, S., Chandramouli, M., Ningaiah, S. (2023,) Green Synthetic Methods for the Cycloaddition Reactions: A Mini Review. Polycycl. Aromat. Compd. 43 (10), 9377–9398. https://doi.org/10.1080/10406638.2022.2162933.
(11) Huisgen, R. (1963) 1,3‐Dipolar Cycloadditions. Past and Future. Angew. Chemie Int. Ed. English, 2 (10), 565–598. https://doi.org/10.1002/anie.196305651.
(12) Huisgen, R., Mloston, G., Langhals, E. (1986) The First Two-Step 1,3-Dipolar Cycloadditions: Non-Stereospecificity. J. Am. Chem. Soc., 108 (20), 6401–6402. https://doi.org/10.1021/ja00280a053.
(13) Huisgen, R., Mloston, G., Langhals, E. (1986) The First Two-Step 1,3-Dipolar Cycloadditions: Interception of Intermediate. J. Org. Chem., 51 (21), 4085–4087. https://doi.org/10.1021/jo00371a039.
(14) Woliński, P., Kącka-Zych, A., Wróblewska, A., Wielgus, E., Dolot, R., Jasiński, R. (2023) Fully Selective Synthesis of Spirocyclic-1,2-Oxazine N-Oxides via Non-Catalysed Hetero Diels-Alder Reactions with the Participation of Cyanofunctionalysed Conjugated Nitroalkenes. Molecules, 28 (12), 4586. https://doi.org/10.3390/molecules28124586.
(15) Kula, K., Łapczuk, A., Sadowski, M., Kras, J., Zawadzińska, K., Demchuk, O. M., Gaurav, G. K., Wróblewska, A., Jasiński, R. (2022,) On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 27 (23), 8409. https://doi.org/10.3390/molecules27238409.
(16) Kula, K., Kącka-Zych, A., Łapczuk-Krygier, A., Jasiński, R. (2021) Analysis of the Possibility and Molecular Mechanism of Carbon Dioxide Consumption in the Diels-Alder Processes. Pure Appl. Chem., 93 (4), 427–446. https://doi.org/10.1515/pac-2020-1009.
(17) Fryźlewicz, A., Olszewska, A., Zawadzińska, K., Woliński, P., Kula, K., Kącka-Zych, A., Łapczuk-Krygier, A., Jasiński, R. (2022) On the Mechanism of the Synthesis of Nitrofunctionalised Δ2-Pyrazolines via [3+2] Cycloaddition Reactions between α-EWG-Activated Nitroethenes and Nitrylimine TAC Systems. Organics, 3 (1), 59–76. https://doi.org/10.3390/org3010004.
(18) Kącka-Zych, A., Pérez, P. (2021) Perfluorobicyclo[2.2.0]Hex-1(4)-Ene as Unique Partner for Diels–Alder Reactions with Benzene: A Density Functional Theory Study. Theor. Chem. Acc., 140 (2), 17. https://doi.org/10.1007/s00214-020-02709-6.
(19) Jasiński, R. (2020) A New Insight on the Molecular Mechanism of the Reaction between (Z)-C,N-Diphenylnitrone and 1,2-Bismethylene-3,3,4,4,5,5-Hexamethylcyclopentane. J. Mol. Graph. Model., 94. https://doi.org/10.1016/j.jmgm.2019.107461.
(20) Jasiński, R. (2016) A Reexamination of the Molecular Mechanism of the Diels–Alder Reaction between Tetrafluoroethene and Cyclopentadiene. React. Kinet. Mech. Catal., 119 (1), 49–57. https://doi.org/10.1007/s11144-016-1038-1.
(21) Reichardt, C. (1965) Empirical Parameters of the Polarity of Solvents. Angew. Chemie Int. Ed. English, 4 (1), 29–40. https://doi.org/10.1002/anie.196500291.
(22) Perrin, C. L., Agranat, I., Bagno, A., Braslavsky, S. E., Fernandes, P. A., Gal, J.-F., Lloyd-Jones, G. C., Mayr, H., Murdoch, J. R., Nudelman, N. S., Radom, L., Rappoport, Z., Ruasse, M.-F., Siehl, H.-U., Takeuchi, Y., Tidwell, T. T., Uggerud, E., Williams, I. H. Dimroth–Reichardt Et Parameter. IUPAC Standards Online. De Gruyter. https://doi.org/10.1515/iupac.94.0407.
(23) Tunuli, M. S., Rauf, M. A., Farhataziz. Dimroth’s ET(30) as Parameters of Solvent Polarity: A Caveat. J. Photochem. 1984, 24 (4), 411–413. https://doi.org/10.1016/0047-2670(84)80023-4.
(24) Domingo, L. R., Ríos-Gutiérrez, M. (2023) A Useful Classification of Organic Reactions Based on the Flux of the Electron Density. Sci. Radices, 2 (1), 1–24. https://doi.org/10.58332/scirad2023v2i1a01.
(25) Domingo, L. R. (2016) Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules, 21 (10), 1319. https://doi.org/10.3390/molecules21101319.
(26) Reed, A. E. (1985) Weinstock, R. B., Weinhold, F. Natural Population Analysis. J. Chem. Phys., 83 (2), 735–746. https://doi.org/10.1063/1.449486.
(27) Domingo, L. R. (2014) A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv., 4 (61), 32415–32428. https://doi.org/10.1039/C4RA04280H.
(28) Dresler, E., Woliński, P., Wróblewska, A., Jasiński, R. (2023) On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules, 28 (24), 8152. https://doi.org/10.3390/molecules28248152.
(29) Sadowski, M., Dresler, E., Zawadzińska, K., Wróblewska, A., Jasiński, R. (2024) Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study. Molecules, 29 (20), 4892. https://doi.org/10.3390/molecules29204892.
(30) Zawadzińska, K., Kula, K. (2021) Application of β-Phosphorylated Nitroethenes in [3+2] Cycloaddition Reactions Involving Benzonitrile N-Oxide in the Light of a DFT Computational Study. Organics, 2 (1), 26–37. https://doi.org/10.3390/org2010003.
(31) Łapczuk-Krygier, A., Jaśkowska, J., Jasiński, R. (2018) The Influence of Lewis Acid Catalyst on the Kinetic and Molecular Mechanism of Nitrous Acid Elimination from 5-Nitro-3-Phenyl-4,5-Dihydroisoxazole: DFT Computational Study. Chem. Heterocycl. Compd., 54 (12), 1172–1174. https://doi.org/10.1007/s10593-019-02410-y.
(32) Sadowski, M., Synkiewicz-Musialska, B., Kula, K. (2024,) (1E,3E)-1,4-Dinitro-1,3-Butadiene—Synthesis, Spectral Characteristics and Computational Study Based on MEDT, ADME and PASS Simulation. Molecules 29 (2), 542. https://doi.org/10.3390/molecules29020542.
(33) Sadowski, M., Kula, K. (2024) Unexpected Course of Reaction Between (1E,3E)-1,4-Dinitro-1,3-Butadiene and N-Methyl Azomethine Ylide—A Comprehensive Experimental and Quantum-Chemical Study. Molecules, 29 (21), 5066. https://doi.org/10.3390/molecules29215066.
(34) Jasiński, R., Mróz, K. (2015,) Kinetic Aspects of [3+2] Cycloaddition Reactions between (E)-3,3,3-Trichloro-1-Nitroprop-1-Ene and Ketonitrones. React. Kinet. Mech. Catal. 116 (1), 35–41. https://doi.org/10.1007/s11144-015-0882-8.
(35) Jasiński, R., Mróz, K., Kącka, (2016) A. Experimental and Theoretical DFT Study on Synthesis of Sterically Crowded 2,3,3,(4)5-Tetrasubstituted-4-Nitroisoxazolidines via 1,3-Dipolar Cycloaddition Reactions Between Ketonitrones and Conjugated Nitroalkenes. J. Heterocycl. Chem., 53 (5), 1424–1429. https://doi.org/10.1002/jhet.2442.
(36) Kwiatkowska, M. (2008) Stereochemiczne i Kinetyczne Studia [2+4] Cykloaddycji Cyklopentadienu Ze Sprzężonymi Nitroalkenami, Cracow University of Technology, PhD Thesis.
(37) Jasiński, R. (2004) Reakcje [2+3] Cykloaddycji Z-C,N-Difenylonitronu i C,C,N-Trifenylonitronu Ze Sprzężonymi Nitroalkenami, Politechnika Krakowska. PhD Thesis.
(38) Mikulska, M. (2015) Teoretyczne i Eksperymentalne Studia Reakcji [2+3] Cykloaddycji 1–Podstawionych Nitroetenów z (Z)–C,N–Diarylonitronami Oraz Termoliza Uzyskanych Adduktów, Cracow University of Technology, PhD Thesis.
(39) Jasiński, R., Kubik, M., Łapczuk-Krygier, A., Kącka, A., Dresler, E., (2014) Boguszewska-Czubara, A. An Experimental and Theoretical Study of the Hetero Diels–Alder Reactions between (E)-2-Aryl-1-Cyano-1-Nitroethenes and Ethyl Vinyl Ether: One-Step or Zwitterionic, Two-Step Mechanism? React. Kinet. Mech. Catal., 113 (2), 333–345. https://doi.org/10.1007/s11144-014-0753-8.
(40) Fringuelli, F., Matteucci, M., Piermatti, O., Pizzo, F., Burla, M. C. (2001) [4 + 2] Cycloadditions of Nitroalkenes in Water. Highly Asymmetric Synthesis of Functionalized Nitronates. J. Org. Chem., 66 (13), 4661–4666. https://doi.org/10.1021/jo010182v.
(41) Schwetlick, K. Kinetische Methoden Zur Untersuchung von Reaktionsmechanismen, VEB Deutscher Verlag der Wissens- chaften: Berlin, 1971.
(42) Reichardt, C., Welton, T. (2010) Solvents and Solvent Effects in Organic Chemistry, Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim,. https://doi.org/10.1002/9783527632220.