How to cite this paper
Martis, G., Sneha, O., Bhat, D & Mugali, P. (2025). A review on conversions of Furfural: Gateway for numerous applications.Current Chemistry Letters, 14(2), 239-250.
Refrences
1 Dias A. S., Lima S., Pillinger M., and Valente A. A. (2007) Modified Versions of Sulfated Zirconia as Catalysts for the Conversion of Xylose to Furfural. Catal Letters., 114 (3–4), 151–160, https://doi.org/10.1007/s10562-007-9052-6.
2 Moreau C., Durand R., Peyron D., Duhamet J., and Rivalier P. (1998) Selective Preparation of Furfural from Xylose over Microporous Solid Acid Catalysts. Ind Crops Prod., 7 (2–3), 95–99, https://doi.org/10.1016/S0926-6690(97)00037-X.
3 Mansilla H. D., Baeza J., Urzúa S., Maturana G., Villaseñor J., and Durán N. (1998) Acid-Catalysed Hydrolysis of Rice Hull: Evaluation of Furfural Production. Bioresour Technol., 66 (3), 189–193, https://doi.org/10.1016/S0960-8524(98)00088-1.
4 Chung N. H., Hoai N. T. T., and Dien L. Q. (2020) Synthesis of Furfural from Acacia Mangium Wood Sawdust‐derived Xylose by Continuous Distillation Method Using Sulfonated Carbonaceous Catalyst from the Same Source. Vietnam Journal of Chemistry., 58 (4), 494–499, https://doi.org/10.1002/vjch.202000012.
5 Román-Leshkov Y., Chheda J. N., and Dumesic J. A. (2006) Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science (1979)., 312 (5782), 1933–1937, https://doi.org/10.1126/science.1126337.
6 Yong G., Zhang Y., and Ying J. Y. (2008) Efficient Catalytic System for the Selective Production of 5‐Hydroxymethylfurfural from Glucose and Fructose. Angewandte Chemie International Edition., 47 (48), 9345–9348, https://doi.org/10.1002/anie.200803207.
7 Binder J. B., and Raines R. T. (2009) Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. J Am Chem Soc., 131 (5), 1979–1985, https://doi.org/10.1021/ja808537j.
8 Sella Kapu N., and Trajano H. L. (2014) Review of Hemicellulose Hydrolysis in Softwoods and Bamboo. Biofuels, Bioproducts and Biorefining., 8 (6), 857–870, https://doi.org/10.1002/bbb.1517.
9 Kamm B., Gruber P. R., and Kamm M. Biorefineries – Industrial Processes and Products. In Ullmann’s Encyclopedia of Industrial Chemistry., Wiley, 2007, https://doi.org/10.1002/14356007.l04_l01.
10 Li X., Jia P., and Wang T. (2016) Furfural: A Promising Platform Compound for Sustainable Production of C 4 and C 5 Chemicals. ACS Catal., 6 (11), 7621–7640, https://doi.org/10.1021/acscatal.6b01838.
11 Luque R., Herrero-Davila L., Campelo J. M., Clark J. H., Hidalgo J. M., Luna D., Marinas J. M., and Romero A. A. (2008) Biofuels: A Technological Perspective. Energy Environ Sci., 1 (5), 542. https://doi.org/10.1039/b807094f.
12 Gupta S., Fernandes R., Patel R., Spreitzer M., and Patel N. (2023) A Review of Cobalt-Based Catalysts for Sustainable Energy and Environmental Applications. Appl Catal A Gen., 661, 119254, https://doi.org/10.1016/j.apcata.2023.119254.
13 Xiang Z., Liang J., Morgan, H. M., Liu, Y., Mao, H., and Bu, Q. (2018) Thermal Behavior and Kinetic Study for Co-Pyrolysis of Lignocellulosic Biomass with Polyethylene over Cobalt Modified ZSM-5 Catalyst by Thermogravimetric Analysis. Bioresour Technol., 247, 804–811, https://doi.org/10.1016/j.biortech.2017.09.178.
14 Bu Q., Chen K., Xie W., Liu Y., Cao M., Kong X., Chu Q., and Mao H. (2019) Hydrocarbon Rich Bio-Oil Production, Thermal Behavior Analysis and Kinetic Study of Microwave-Assisted Co-Pyrolysis of Microwave-Torrefied Lignin with Low Density Polyethylene. Bioresour Technol., 291, 121860, https://doi.org/10.1016/j.biortech.2019.121860.
15 Chen S., Wojcieszak R., Dumeignil F., Marceau E., and Royer S. (2018) How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chem Rev., 118 (22), 11023–11117, https://doi.org/10.1021/acs.chemrev.8b00134.
16 Jasiński R. (2021) On the Question of Stepwise [4+2] Cycloaddition Reactions and Their Stereochemical Aspects. Symmetry., 13 (10), 1911, https://doi.org/10.3390/sym13101911.
17 Cioc R. C., Lutz M., Pidko E. A., Crockatt M., van der Waal J. C., and Bruijnincx P. C. A. (2021) Direct Diels–Alder Reactions of Furfural Derivatives with Maleimides. Green Chemistry., 23 (1), 367–373, https://doi.org/10.1039/D0GC03558K.
18 Kucherov F. A., Galkin K. I., Gordeev E. G., and Ananikov V. P. (2017) Efficient Route for the Construction of Polycyclic Systems from Bioderived HMF. Green Chemistry., 19 (20), 4858–4864, https://doi.org/10.1039/C7GC02211E.
19 Audemar M., Wang Y., Zhao D., Royer S., Jérôme F., Len C., and De Oliveira Vigier K. (2020) Synthesis of Furfuryl Alcohol from Furfural: A Comparison between Batch and Continuous Flow Reactors. Energies (Basel)., 13 (4), 1002, https://doi.org/10.3390/en13041002.
20 Eseyin A. E., and Steele P. H. (2015) An Overview of the Applications of Furfural and Its Derivatives. International Journal of Advanced Chemistry., 3 (2), 42–47, https://doi.org/10.14419/ijac.v3i2.5048.
21 Mariscal R., Maireles-Torres P., Ojeda M., Sádaba I., and López Granados M. (2016) Furfural: A Renewable and Versatile Platform Molecule for the Synthesis of Chemicals and Fuels. Energy Environ Sci., 9 (4), 1144–1189, https://doi.org/10.1039/C5EE02666K.
22 Mathew A. K., Abraham A., Mallapureddy K. K., and Sukumaran R. K. (2018) Lignocellulosic Biorefinery Wastes, or Resources? In Waste Biorefinery, Elsevier., 267–297, https://doi.org/10.1016/B978-0-444-63992-9.00009-4.
23 Guo H., and Yin G. (2011) Catalytic Aerobic Oxidation of Renewable Furfural with Phosphomolybdic Acid Catalyst: An Alternative Route to Maleic Acid. The Journal of Physical Chemistry C, 115 (35), 17516–17522, https://doi.org/10.1021/jp2054712.
24 Li X., Ho B., and Zhang Y. (2016) Selective Aerobic Oxidation of Furfural to Maleic Anhydride with Heterogeneous Mo–V–O Catalysts. Green Chemistry., 18 (10), 2976–2980, https://doi.org/10.1039/C6GC00508J.
25 Dalli S. S., Tilaye T. J., and Rakshit S. K. (2017) Conversion of Wood-Based Hemicellulose Prehydrolysate into Succinic Acid Using a Heterogeneous Acid Catalyst in a Biphasic System. Ind Eng Chem Res., 56 (38), 10582–10590, https://doi.org/10.1021/acs.iecr.7b01708.
26 Li X., Lan X., and Wang T. (2016) Selective Oxidation of Furfural in a Bi-Phasic System with Homogeneous Acid Catalyst. Catal Today., 276, 97–104, https://doi.org/10.1016/j.cattod.2015.11.036.
27 Papanikolaou G., Lanzafame P., Perathoner S., Centi G., Cozza D., Giorgianni G., Migliori M., and Giordano, G. (2021) High Performance of Au/ZTC Based Catalysts for the Selective Oxidation of Bio-Derivative Furfural to 2-Furoic Acid. Catal Commun., 149, 106234. https://doi.org/10.1016/j.catcom.2020.106234.
28 Tian Q., Shi D., and Sha Y. (2008) CuO and Ag2O/CuO Catalyzed Oxidation of Aldehydes to the Corresponding Carboxylic Acids by Molecular Oxygen. Molecules., 13 (4), 948–957, https://doi.org/10.3390/molecules13040948.
29 Douthwaite M., Huang X., Iqbal S., Miedziak P. J., Brett G. L., Kondrat S. A., Edwards J. K., Sankar M., Knight D. W., Bethell D., and Hutchings G. J. (2017) The Controlled Catalytic Oxidation of Furfural to Furoic Acid Using AuPd/Mg(OH)2. Catal Sci Technol., 7 (22), 5284–5293, https://doi.org/10.1039/C7CY01025G.
30 Peng B., Ma C.-L., Zhang P.-Q., Wu C.-Q., Wang Z.-W., Li A.-T., He Y.-C., and Yang B. (2019) An Effective Hybrid Strategy for Converting Rice Straw to Furoic Acid by Tandem Catalysis via Sn-Sepiolite Combined with Recombinant E. Coli Whole Cells Harboring Horse Liver Alcohol Dehydrogenase. Green Chemistry., 21 (21), 5914–5923. https://doi.org/10.1039/C9GC02499A.
31 Knaus T., Tseliou V., Humphreys L. D., Scrutton N. S., and Mutti F. G. (2018) A Biocatalytic Method for the Chemoselective Aerobic Oxidation of Aldehydes to Carboxylic Acids. Green Chemistry., 20 (17), 3931–3943, https://doi.org/10.1039/C8GC01381K.
32 Pan T., Deng J., Xu Q., Zuo Y., Guo Q., and Fu Y. (2013) Catalytic Conversion of Furfural into a 2,5‐Furandicarboxylic Acid‐Based Polyester with Total Carbon Utilization. ChemSusChem., 6 (1), 47–50, https://doi.org/10.1002/cssc.201200652.
33 Banerjee A., Dick G. R., Yoshino T., and Kanan M. W. (2016) Carbon Dioxide Utilization via Carbonate-Promoted C–H Carboxylation. Nature., 531 (7593), 215–219, https://doi.org/10.1038/nature17185.
34 Zhang S., Lan J., Chen Z., Yin G., and Li G. (2017) Catalytic Synthesis of 2,5-Furandicarboxylic Acid from Furoic Acid: Transformation from C5 Platform to C6 Derivatives in Biomass Utilizations. ACS Sustain Chem Eng., 5 (10), 9360–9369, https://doi.org/10.1021/acssuschemeng.7b02396.
35 Payne K. A. P., Marshall S. A., Fisher K., Cliff M. J., Cannas D. M., Yan C., Heyes D. J., Parker D. A., Larrosa I., and Leys D. (2019) Enzymatic Carboxylation of 2-Furoic Acid Yields 2,5-Furandicarboxylic Acid (FDCA). ACS Catal., 9 (4), 2854–2865, https://doi.org/10.1021/acscatal.8b04862.
36 Chatterjee M., Ishizaka T., and Kawanami H. (2016) Reductive Amination of Furfural to Furfurylamine Using Aqueous Ammonia Solution and Molecular Hydrogen: An Environmentally Friendly Approach. Green Chemistry., 18 (2), 487–496, https://doi.org/10.1039/C5GC01352F.
37 Martínez J. J., Nope E., Rojas H., Brijaldo M. H., Passos F., Romanelli G. (2014) Reductive Amination of Furfural over Me/SiO2–SO3H (Me: Pt, Ir, Au) Catalysts. J Mol Catal A Chem., 392, 235–240, https://doi.org/10.1016/j.molcata.2014.05.014.
38 Zhou K., Chen B., Zhou X., Kang S., Xu, Y., and Wei J. (2019) Selective Synthesis of Furfurylamine by Reductive Amination of Furfural over Raney Cobalt. ChemCatChem., 11 (22), 5562–5569, https://doi.org/10.1002/cctc.201901269.
39 Yang Y., Zhang L., Zhou L., Cheng H., and Zhao F. (2024) A Highly Efficient Ni/Al2O3-LaOx Catalyst for the Reductive Amination of Furfural to Furfurylamine: The Promoting Effect of La. Chem Res Chin Univ., 40 (1), 36–46, https://doi.org/10.1007/s40242-023-3216-9.
40 Dong C., Wang H., Du H., Peng J., Cai Y., Guo S., Zhang J., Samart C., and Ding M. (2020) Ru/H ZSM-5 as an Efficient and Recyclable Catalyst for Reductive Amination of Furfural to Furfurylamine. Molecular Catalysis., 482, 110755, https://doi.org/10.1016/j.mcat.2019.110755.
41 Dunbabin A., Subrizi F., Ward J. M., Sheppard T. D., and Hailes H. C. (2017) Furfurylamines from Biomass: Transaminase Catalysed Upgrading of Furfurals. Green Chemistry., 19 (2), 397–404, https://doi.org/10.1039/C6GC02241C.
42 Rao R., Dandekar A., Baker R. T. K., and Vannice M. A. (1997) Properties of Copper Chromite Catalysts in Hydrogenation Reactions. J Catal., 171 (2), 406–419, https://doi.org/10.1006/jcat.1997.1832.
43 Wang C., Wang A., Yu Z., Wang Y., Sun Z., Kogan V. M., and Liu Y.-Y. (2021) Aqueous Phase Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol over Pd/UiO-66. Catal Commun., 148, 106178, https://doi.org/10.1016/j.catcom.2020.106178.
44 Biradar N. S., Hengne A. M., Birajdar S. N., Niphadkar P. S., Joshi P. N., and Rode C. V. (2014) Single-Pot Formation of THFAL via Catalytic Hydrogenation of FFR Over Pd/MFI Catalyst. ACS Sustain Chem Eng., 2 (2), 272–281, https://doi.org/10.1021/sc400302b.
45 Halilu A., Ali T. H., Atta A. Y., Sudarsanam P., Bhargava S. K., and Abd Hamid S. B. (2016) Highly Selective Hydrogenation of Biomass-Derived Furfural into Furfuryl Alcohol Using a Novel Magnetic Nanoparticles Catalyst. Energy & Fuels., 30 (3), 2216–2226, https://doi.org/10.1021/acs.energyfuels.5b02826.
46 Yan K., and Chen A. (2014) Selective Hydrogenation of Furfural and Levulinic Acid to Biofuels on the Ecofriendly Cu–Fe Catalyst. Fuel., 115, 101–108, https://doi.org/10.1016/j.fuel.2013.06.042.
47 Wang T., Hu A., Wang H., and Xia Y. (2019) Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Ni–Fe‐layered Double Hydroxide Catalysts. Journal of the Chinese Chemical Society., 66 (12), 1610–1618, https://doi.org/10.1002/jccs.201800477.
48 Hai X., Tan J., He J., Yang X., Na Y., Wang Y., and Zhao Y. (2023) Hydrogenation of Furfural to 1,5-Pentanediol over CuCo Bimetallic Catalysts. Journal of Fuel Chemistry and Technology., 51 (7), 959–969, https://doi.org/10.1016/S1872-5813(23)60334-2.
49 Li F., Jiang S., Huang J., Wang Y., Lu S., and Li C. (2020) Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over a Magnetic Fe3O4@C Catalyst. New Journal of Chemistry., 44 (2), 478–486, https://doi.org/10.1039/C9NJ04698D.
50 Hou P., Ma M., Zhang P., Cao J., Liu H., Xu X., Yue H., Tian G., Feng S. (2021) Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol Using Easy-to-Separate Core–Shell Magnetic Zirconium Hydroxide. New Journal of Chemistry., 45 (5), 2715–2722, https://doi.org/10.1039/D0NJ05638C.
51 Feng Li, Jiang S., Wang Y., Huang J., Li C. (2021) Catalytic Transfer Hydrogenation of Furfural over CuNi@C Catalyst Prepared from Cu–Ni Metal-Organic Frameworks. Russian Journal of Physical Chemistry A., 95 (1), 68–79, https://doi.org/10.1134/S0036024421010143.
52 Valekar A. H., Lee M., Yoon J. W., Kwak J., Hong D.-Y., Oh K.-R., Cha G.-Y., Kwon Y.-U., Jung J., Chang J.-S., and Hwang Y. K. (2020) Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol under Mild Conditions over Zr-MOFs: Exploring the Role of Metal Node Coordination and Modification. ACS Catal., 10 (6), 3720–3732, https://doi.org/10.1021/acscatal.9b05085.
53 Liu S., Amada Y., Tamura M., Nakagawa Y., and Tomishige K. (2014) Performance and Characterization of Rhenium-Modified Rh–Ir Alloy Catalyst for One-Pot Conversion of Furfural into 1,5-Pentanediol. Catal. Sci. Technol., 4 (8), 2535–2549, https://doi.org/10.1039/C4CY00161C.
54 Huang K., Brentzel Z. J., Barnett K. J., Dumesic J. A., Huber G. W., and Maravelias C. T. (2017) Conversion of Furfural to 1,5-Pentanediol: Process Synthesis and Analysis. ACS Sustain Chem Eng., 5 (6), 4699–4706, https://doi.org/10.1021/acssuschemeng.7b00059.
55 Xu W., Wang H., Liu X., Ren J., Wang Y., and Lu G. (2011) Direct Catalytic Conversion of Furfural to 1,5-Pentanediol by Hydrogenolysis of the Furan Ring under Mild Conditions over Pt/Co2AlO4 Catalyst. Chemical Communications., 47 (13), 3924, https://doi.org/10.1039/c0cc05775d.
56 Pisal D. S., and Yadav G. D. (2019) Single-Step Hydrogenolysis of Furfural to 1,2-Pentanediol Using a Bifunctional Rh/OMS-2 Catalyst. ACS Omega., 4 (1), 1201–1214, https://doi.org/10.1021/acsomega.8b01595.
57 Wang W., Ji X., Ge H., Li Z., Tian G., Shao X., and Zhang Q. (2017) Synthesis of C15 and C10 Fuel Precursors with Cyclopentanone and Furfural Derived from Hemicellulose. RSC Adv., 7 (27), 16901–16907, https://doi.org/10.1039/C7RA02396K.
58 Li X., Deng Q., Zhou S., Zou J., Wang J., Wang R., Zeng Z., and Deng S. (2019) Double-Metal Cyanide-Supported Pd Catalysts for Highly Efficient Hydrogenative Ring-Rearrangement of Biomass-Derived Furanic Aldehydes to Cyclopentanone Compounds. J Catal., 378, 201–208, https://doi.org/10.1016/j.jcat.2019.08.036.
59 Li X., Deng Q., Zhang L., Wang J., Wang R., Zeng Z., and Deng S. (2019) Highly Efficient Hydrogenative Ring-Rearrangement of Furanic Aldehydes to Cyclopentanone Compounds Catalyzed by Noble Metals/MIL-MOFs. Appl Catal A Gen., 575, 152–158, https://doi.org/10.1016/j.apcata.2019.02.023.
60 Yang Y., Du Z., Huang Y., Lu F., Wang F., Gao J., and Xu J. (2013) Conversion of Furfural into Cyclopentanone over Ni–Cu Bimetallic Catalysts. Green Chemistry., 15 (7), 1932, https://doi.org/10.1039/c3gc37133f.
61 Wang Y., Sang S., Zhu W., Gao L., Xiao G. (2016) CuNi@C Catalysts with High Activity Derived from Metal–Organic Frameworks Precursor for Conversion of Furfural to Cyclopentanone. Chemical Engineering Journal., 299, 104–111, https://doi.org/10.1016/j.cej.2016.04.068.
62 Fulajtárová K., Hronec M., Liptaj T., Prónayová N., and Soták T. (2016) Catalytic Hydrogenation of Condensation Product of Furfural with Cyclopentanone Using Molecular Hydrogen and Formic Acid as Hydrogen Donor. J Taiwan Inst Chem Eng., 66, 137–142, https://doi.org/10.1016/j.jtice.2016.06.002.
63 Date N. S., Kondawar S. E., Chikate R. C., and Rode C. V. (2018) Single-Pot Reductive Rearrangement of Furfural to Cyclopentanone over Silica-Supported Pd Catalysts. ACS Omega., 3 (8), 9860–9871, https://doi.org/10.1021/acsomega.8b00980.
64 Kumar A., Shende D. Z., and Wasewar K. L. (2020) Production of Levulinic Acid: A Promising Building Block Material for Pharmaceutical and Food Industry. Mater Today Proc., 29, 790–793, https://doi.org/10.1016/j.matpr.2020.04.749.
65 González Maldonado G. M., Assary R. S., and Dumesic J., Curtiss L. A. (2012) Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution. Energy Environ Sci., 5 (5), 6981, https://doi.org/10.1039/c2ee03465d.
66 Gürbüz E. I., Wettstein S. G., and Dumesic J. A. (2012) Conversion of Hemicellulose to Furfural and Levulinic Acid Using Biphasic Reactors with Alkylphenol Solvents. ChemSusChem., 5 (2), 383–387, https://doi.org/10.1002/cssc.201100608.
67 Zhangabylov N. S., Dederer L. Yu., Gorbacheva L. B., Vasil’eva S. V., Terekhov A. S., and Adekenov S. M. (2004) Sesquiterpene Lactone Arglabin Influences DNA Synthesis in P388 Leukemia Cells in Vivo. Pharm Chem J., 38 (12), 651–653, https://doi.org/10.1007/s11094-005-0052-9.
68 Chen H., Wu G., Gao S., Guo R., Zhao Z., Yuan H., Liu S., Wu J., Lu X., Yuan X., Yu Z., Zu X., Xie N., Yang N., Hu Z., Sun Q., and Zhang W. (2017) Discovery of Potent Small-Molecule Inhibitors of Ubiquitin-Conjugating Enzyme UbcH5c from α-Santonin Derivatives. J Med Chem., 60 (16), 6828–6852, https://doi.org/10.1021/acs.jmedchem.6b01829.
69 Chen L. Z., Wu J., Li K., Wu Q. Q., Chen R., Liu X. H., and Ruan B. F. (2020) Novel Phthalide Derivatives: Synthesis and Anti-Inflammatory Activity in Vitro and in Vivo. Eur J Med Chem, 206, 112722. https://doi.org/10.1016/j.ejmech.2020.112722.
70 Li X., Lan X., and Wang T. (2016) Highly Selective Catalytic Conversion of Furfural to γ-Butyrolactone. Green Chemistry., 18 (3), 638–642, https://doi.org/10.1039/C5GC02411K.
71 Abdel-Raheem S. A. A., Drar A. M., Hussein B. R. M., Moustafa A. H. (2023) Some oxoimidazolidine and cyanoguanidine compounds: Toxicological efficacy and structure-activity relationships studies. Curr Chem Lett., 12 (4), 695–704, https://doi.org/10.5267/j.ccl.2023.5.005
72 Drar A. M., Abdel-Raheem S. A. A., Moustafa A. H., Hussein B. R. M. (2023) Studying the toxicity and structure-activity relationships of some synthesized polyfunctionalized pyrimidine compounds as potential insecticides. Curr Chem Lett., 12 (3), 499–508, https://doi.org/10.5267/j.ccl.2023.3.006
73 Sadowski M., Dresler E., Wróblewska A., Jasiński R. (2024) A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study. Molecules., 29 (20), 4876, https://doi.org/10.3390/molecules29204876
2 Moreau C., Durand R., Peyron D., Duhamet J., and Rivalier P. (1998) Selective Preparation of Furfural from Xylose over Microporous Solid Acid Catalysts. Ind Crops Prod., 7 (2–3), 95–99, https://doi.org/10.1016/S0926-6690(97)00037-X.
3 Mansilla H. D., Baeza J., Urzúa S., Maturana G., Villaseñor J., and Durán N. (1998) Acid-Catalysed Hydrolysis of Rice Hull: Evaluation of Furfural Production. Bioresour Technol., 66 (3), 189–193, https://doi.org/10.1016/S0960-8524(98)00088-1.
4 Chung N. H., Hoai N. T. T., and Dien L. Q. (2020) Synthesis of Furfural from Acacia Mangium Wood Sawdust‐derived Xylose by Continuous Distillation Method Using Sulfonated Carbonaceous Catalyst from the Same Source. Vietnam Journal of Chemistry., 58 (4), 494–499, https://doi.org/10.1002/vjch.202000012.
5 Román-Leshkov Y., Chheda J. N., and Dumesic J. A. (2006) Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science (1979)., 312 (5782), 1933–1937, https://doi.org/10.1126/science.1126337.
6 Yong G., Zhang Y., and Ying J. Y. (2008) Efficient Catalytic System for the Selective Production of 5‐Hydroxymethylfurfural from Glucose and Fructose. Angewandte Chemie International Edition., 47 (48), 9345–9348, https://doi.org/10.1002/anie.200803207.
7 Binder J. B., and Raines R. T. (2009) Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. J Am Chem Soc., 131 (5), 1979–1985, https://doi.org/10.1021/ja808537j.
8 Sella Kapu N., and Trajano H. L. (2014) Review of Hemicellulose Hydrolysis in Softwoods and Bamboo. Biofuels, Bioproducts and Biorefining., 8 (6), 857–870, https://doi.org/10.1002/bbb.1517.
9 Kamm B., Gruber P. R., and Kamm M. Biorefineries – Industrial Processes and Products. In Ullmann’s Encyclopedia of Industrial Chemistry., Wiley, 2007, https://doi.org/10.1002/14356007.l04_l01.
10 Li X., Jia P., and Wang T. (2016) Furfural: A Promising Platform Compound for Sustainable Production of C 4 and C 5 Chemicals. ACS Catal., 6 (11), 7621–7640, https://doi.org/10.1021/acscatal.6b01838.
11 Luque R., Herrero-Davila L., Campelo J. M., Clark J. H., Hidalgo J. M., Luna D., Marinas J. M., and Romero A. A. (2008) Biofuels: A Technological Perspective. Energy Environ Sci., 1 (5), 542. https://doi.org/10.1039/b807094f.
12 Gupta S., Fernandes R., Patel R., Spreitzer M., and Patel N. (2023) A Review of Cobalt-Based Catalysts for Sustainable Energy and Environmental Applications. Appl Catal A Gen., 661, 119254, https://doi.org/10.1016/j.apcata.2023.119254.
13 Xiang Z., Liang J., Morgan, H. M., Liu, Y., Mao, H., and Bu, Q. (2018) Thermal Behavior and Kinetic Study for Co-Pyrolysis of Lignocellulosic Biomass with Polyethylene over Cobalt Modified ZSM-5 Catalyst by Thermogravimetric Analysis. Bioresour Technol., 247, 804–811, https://doi.org/10.1016/j.biortech.2017.09.178.
14 Bu Q., Chen K., Xie W., Liu Y., Cao M., Kong X., Chu Q., and Mao H. (2019) Hydrocarbon Rich Bio-Oil Production, Thermal Behavior Analysis and Kinetic Study of Microwave-Assisted Co-Pyrolysis of Microwave-Torrefied Lignin with Low Density Polyethylene. Bioresour Technol., 291, 121860, https://doi.org/10.1016/j.biortech.2019.121860.
15 Chen S., Wojcieszak R., Dumeignil F., Marceau E., and Royer S. (2018) How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chem Rev., 118 (22), 11023–11117, https://doi.org/10.1021/acs.chemrev.8b00134.
16 Jasiński R. (2021) On the Question of Stepwise [4+2] Cycloaddition Reactions and Their Stereochemical Aspects. Symmetry., 13 (10), 1911, https://doi.org/10.3390/sym13101911.
17 Cioc R. C., Lutz M., Pidko E. A., Crockatt M., van der Waal J. C., and Bruijnincx P. C. A. (2021) Direct Diels–Alder Reactions of Furfural Derivatives with Maleimides. Green Chemistry., 23 (1), 367–373, https://doi.org/10.1039/D0GC03558K.
18 Kucherov F. A., Galkin K. I., Gordeev E. G., and Ananikov V. P. (2017) Efficient Route for the Construction of Polycyclic Systems from Bioderived HMF. Green Chemistry., 19 (20), 4858–4864, https://doi.org/10.1039/C7GC02211E.
19 Audemar M., Wang Y., Zhao D., Royer S., Jérôme F., Len C., and De Oliveira Vigier K. (2020) Synthesis of Furfuryl Alcohol from Furfural: A Comparison between Batch and Continuous Flow Reactors. Energies (Basel)., 13 (4), 1002, https://doi.org/10.3390/en13041002.
20 Eseyin A. E., and Steele P. H. (2015) An Overview of the Applications of Furfural and Its Derivatives. International Journal of Advanced Chemistry., 3 (2), 42–47, https://doi.org/10.14419/ijac.v3i2.5048.
21 Mariscal R., Maireles-Torres P., Ojeda M., Sádaba I., and López Granados M. (2016) Furfural: A Renewable and Versatile Platform Molecule for the Synthesis of Chemicals and Fuels. Energy Environ Sci., 9 (4), 1144–1189, https://doi.org/10.1039/C5EE02666K.
22 Mathew A. K., Abraham A., Mallapureddy K. K., and Sukumaran R. K. (2018) Lignocellulosic Biorefinery Wastes, or Resources? In Waste Biorefinery, Elsevier., 267–297, https://doi.org/10.1016/B978-0-444-63992-9.00009-4.
23 Guo H., and Yin G. (2011) Catalytic Aerobic Oxidation of Renewable Furfural with Phosphomolybdic Acid Catalyst: An Alternative Route to Maleic Acid. The Journal of Physical Chemistry C, 115 (35), 17516–17522, https://doi.org/10.1021/jp2054712.
24 Li X., Ho B., and Zhang Y. (2016) Selective Aerobic Oxidation of Furfural to Maleic Anhydride with Heterogeneous Mo–V–O Catalysts. Green Chemistry., 18 (10), 2976–2980, https://doi.org/10.1039/C6GC00508J.
25 Dalli S. S., Tilaye T. J., and Rakshit S. K. (2017) Conversion of Wood-Based Hemicellulose Prehydrolysate into Succinic Acid Using a Heterogeneous Acid Catalyst in a Biphasic System. Ind Eng Chem Res., 56 (38), 10582–10590, https://doi.org/10.1021/acs.iecr.7b01708.
26 Li X., Lan X., and Wang T. (2016) Selective Oxidation of Furfural in a Bi-Phasic System with Homogeneous Acid Catalyst. Catal Today., 276, 97–104, https://doi.org/10.1016/j.cattod.2015.11.036.
27 Papanikolaou G., Lanzafame P., Perathoner S., Centi G., Cozza D., Giorgianni G., Migliori M., and Giordano, G. (2021) High Performance of Au/ZTC Based Catalysts for the Selective Oxidation of Bio-Derivative Furfural to 2-Furoic Acid. Catal Commun., 149, 106234. https://doi.org/10.1016/j.catcom.2020.106234.
28 Tian Q., Shi D., and Sha Y. (2008) CuO and Ag2O/CuO Catalyzed Oxidation of Aldehydes to the Corresponding Carboxylic Acids by Molecular Oxygen. Molecules., 13 (4), 948–957, https://doi.org/10.3390/molecules13040948.
29 Douthwaite M., Huang X., Iqbal S., Miedziak P. J., Brett G. L., Kondrat S. A., Edwards J. K., Sankar M., Knight D. W., Bethell D., and Hutchings G. J. (2017) The Controlled Catalytic Oxidation of Furfural to Furoic Acid Using AuPd/Mg(OH)2. Catal Sci Technol., 7 (22), 5284–5293, https://doi.org/10.1039/C7CY01025G.
30 Peng B., Ma C.-L., Zhang P.-Q., Wu C.-Q., Wang Z.-W., Li A.-T., He Y.-C., and Yang B. (2019) An Effective Hybrid Strategy for Converting Rice Straw to Furoic Acid by Tandem Catalysis via Sn-Sepiolite Combined with Recombinant E. Coli Whole Cells Harboring Horse Liver Alcohol Dehydrogenase. Green Chemistry., 21 (21), 5914–5923. https://doi.org/10.1039/C9GC02499A.
31 Knaus T., Tseliou V., Humphreys L. D., Scrutton N. S., and Mutti F. G. (2018) A Biocatalytic Method for the Chemoselective Aerobic Oxidation of Aldehydes to Carboxylic Acids. Green Chemistry., 20 (17), 3931–3943, https://doi.org/10.1039/C8GC01381K.
32 Pan T., Deng J., Xu Q., Zuo Y., Guo Q., and Fu Y. (2013) Catalytic Conversion of Furfural into a 2,5‐Furandicarboxylic Acid‐Based Polyester with Total Carbon Utilization. ChemSusChem., 6 (1), 47–50, https://doi.org/10.1002/cssc.201200652.
33 Banerjee A., Dick G. R., Yoshino T., and Kanan M. W. (2016) Carbon Dioxide Utilization via Carbonate-Promoted C–H Carboxylation. Nature., 531 (7593), 215–219, https://doi.org/10.1038/nature17185.
34 Zhang S., Lan J., Chen Z., Yin G., and Li G. (2017) Catalytic Synthesis of 2,5-Furandicarboxylic Acid from Furoic Acid: Transformation from C5 Platform to C6 Derivatives in Biomass Utilizations. ACS Sustain Chem Eng., 5 (10), 9360–9369, https://doi.org/10.1021/acssuschemeng.7b02396.
35 Payne K. A. P., Marshall S. A., Fisher K., Cliff M. J., Cannas D. M., Yan C., Heyes D. J., Parker D. A., Larrosa I., and Leys D. (2019) Enzymatic Carboxylation of 2-Furoic Acid Yields 2,5-Furandicarboxylic Acid (FDCA). ACS Catal., 9 (4), 2854–2865, https://doi.org/10.1021/acscatal.8b04862.
36 Chatterjee M., Ishizaka T., and Kawanami H. (2016) Reductive Amination of Furfural to Furfurylamine Using Aqueous Ammonia Solution and Molecular Hydrogen: An Environmentally Friendly Approach. Green Chemistry., 18 (2), 487–496, https://doi.org/10.1039/C5GC01352F.
37 Martínez J. J., Nope E., Rojas H., Brijaldo M. H., Passos F., Romanelli G. (2014) Reductive Amination of Furfural over Me/SiO2–SO3H (Me: Pt, Ir, Au) Catalysts. J Mol Catal A Chem., 392, 235–240, https://doi.org/10.1016/j.molcata.2014.05.014.
38 Zhou K., Chen B., Zhou X., Kang S., Xu, Y., and Wei J. (2019) Selective Synthesis of Furfurylamine by Reductive Amination of Furfural over Raney Cobalt. ChemCatChem., 11 (22), 5562–5569, https://doi.org/10.1002/cctc.201901269.
39 Yang Y., Zhang L., Zhou L., Cheng H., and Zhao F. (2024) A Highly Efficient Ni/Al2O3-LaOx Catalyst for the Reductive Amination of Furfural to Furfurylamine: The Promoting Effect of La. Chem Res Chin Univ., 40 (1), 36–46, https://doi.org/10.1007/s40242-023-3216-9.
40 Dong C., Wang H., Du H., Peng J., Cai Y., Guo S., Zhang J., Samart C., and Ding M. (2020) Ru/H ZSM-5 as an Efficient and Recyclable Catalyst for Reductive Amination of Furfural to Furfurylamine. Molecular Catalysis., 482, 110755, https://doi.org/10.1016/j.mcat.2019.110755.
41 Dunbabin A., Subrizi F., Ward J. M., Sheppard T. D., and Hailes H. C. (2017) Furfurylamines from Biomass: Transaminase Catalysed Upgrading of Furfurals. Green Chemistry., 19 (2), 397–404, https://doi.org/10.1039/C6GC02241C.
42 Rao R., Dandekar A., Baker R. T. K., and Vannice M. A. (1997) Properties of Copper Chromite Catalysts in Hydrogenation Reactions. J Catal., 171 (2), 406–419, https://doi.org/10.1006/jcat.1997.1832.
43 Wang C., Wang A., Yu Z., Wang Y., Sun Z., Kogan V. M., and Liu Y.-Y. (2021) Aqueous Phase Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol over Pd/UiO-66. Catal Commun., 148, 106178, https://doi.org/10.1016/j.catcom.2020.106178.
44 Biradar N. S., Hengne A. M., Birajdar S. N., Niphadkar P. S., Joshi P. N., and Rode C. V. (2014) Single-Pot Formation of THFAL via Catalytic Hydrogenation of FFR Over Pd/MFI Catalyst. ACS Sustain Chem Eng., 2 (2), 272–281, https://doi.org/10.1021/sc400302b.
45 Halilu A., Ali T. H., Atta A. Y., Sudarsanam P., Bhargava S. K., and Abd Hamid S. B. (2016) Highly Selective Hydrogenation of Biomass-Derived Furfural into Furfuryl Alcohol Using a Novel Magnetic Nanoparticles Catalyst. Energy & Fuels., 30 (3), 2216–2226, https://doi.org/10.1021/acs.energyfuels.5b02826.
46 Yan K., and Chen A. (2014) Selective Hydrogenation of Furfural and Levulinic Acid to Biofuels on the Ecofriendly Cu–Fe Catalyst. Fuel., 115, 101–108, https://doi.org/10.1016/j.fuel.2013.06.042.
47 Wang T., Hu A., Wang H., and Xia Y. (2019) Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Ni–Fe‐layered Double Hydroxide Catalysts. Journal of the Chinese Chemical Society., 66 (12), 1610–1618, https://doi.org/10.1002/jccs.201800477.
48 Hai X., Tan J., He J., Yang X., Na Y., Wang Y., and Zhao Y. (2023) Hydrogenation of Furfural to 1,5-Pentanediol over CuCo Bimetallic Catalysts. Journal of Fuel Chemistry and Technology., 51 (7), 959–969, https://doi.org/10.1016/S1872-5813(23)60334-2.
49 Li F., Jiang S., Huang J., Wang Y., Lu S., and Li C. (2020) Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over a Magnetic Fe3O4@C Catalyst. New Journal of Chemistry., 44 (2), 478–486, https://doi.org/10.1039/C9NJ04698D.
50 Hou P., Ma M., Zhang P., Cao J., Liu H., Xu X., Yue H., Tian G., Feng S. (2021) Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol Using Easy-to-Separate Core–Shell Magnetic Zirconium Hydroxide. New Journal of Chemistry., 45 (5), 2715–2722, https://doi.org/10.1039/D0NJ05638C.
51 Feng Li, Jiang S., Wang Y., Huang J., Li C. (2021) Catalytic Transfer Hydrogenation of Furfural over CuNi@C Catalyst Prepared from Cu–Ni Metal-Organic Frameworks. Russian Journal of Physical Chemistry A., 95 (1), 68–79, https://doi.org/10.1134/S0036024421010143.
52 Valekar A. H., Lee M., Yoon J. W., Kwak J., Hong D.-Y., Oh K.-R., Cha G.-Y., Kwon Y.-U., Jung J., Chang J.-S., and Hwang Y. K. (2020) Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol under Mild Conditions over Zr-MOFs: Exploring the Role of Metal Node Coordination and Modification. ACS Catal., 10 (6), 3720–3732, https://doi.org/10.1021/acscatal.9b05085.
53 Liu S., Amada Y., Tamura M., Nakagawa Y., and Tomishige K. (2014) Performance and Characterization of Rhenium-Modified Rh–Ir Alloy Catalyst for One-Pot Conversion of Furfural into 1,5-Pentanediol. Catal. Sci. Technol., 4 (8), 2535–2549, https://doi.org/10.1039/C4CY00161C.
54 Huang K., Brentzel Z. J., Barnett K. J., Dumesic J. A., Huber G. W., and Maravelias C. T. (2017) Conversion of Furfural to 1,5-Pentanediol: Process Synthesis and Analysis. ACS Sustain Chem Eng., 5 (6), 4699–4706, https://doi.org/10.1021/acssuschemeng.7b00059.
55 Xu W., Wang H., Liu X., Ren J., Wang Y., and Lu G. (2011) Direct Catalytic Conversion of Furfural to 1,5-Pentanediol by Hydrogenolysis of the Furan Ring under Mild Conditions over Pt/Co2AlO4 Catalyst. Chemical Communications., 47 (13), 3924, https://doi.org/10.1039/c0cc05775d.
56 Pisal D. S., and Yadav G. D. (2019) Single-Step Hydrogenolysis of Furfural to 1,2-Pentanediol Using a Bifunctional Rh/OMS-2 Catalyst. ACS Omega., 4 (1), 1201–1214, https://doi.org/10.1021/acsomega.8b01595.
57 Wang W., Ji X., Ge H., Li Z., Tian G., Shao X., and Zhang Q. (2017) Synthesis of C15 and C10 Fuel Precursors with Cyclopentanone and Furfural Derived from Hemicellulose. RSC Adv., 7 (27), 16901–16907, https://doi.org/10.1039/C7RA02396K.
58 Li X., Deng Q., Zhou S., Zou J., Wang J., Wang R., Zeng Z., and Deng S. (2019) Double-Metal Cyanide-Supported Pd Catalysts for Highly Efficient Hydrogenative Ring-Rearrangement of Biomass-Derived Furanic Aldehydes to Cyclopentanone Compounds. J Catal., 378, 201–208, https://doi.org/10.1016/j.jcat.2019.08.036.
59 Li X., Deng Q., Zhang L., Wang J., Wang R., Zeng Z., and Deng S. (2019) Highly Efficient Hydrogenative Ring-Rearrangement of Furanic Aldehydes to Cyclopentanone Compounds Catalyzed by Noble Metals/MIL-MOFs. Appl Catal A Gen., 575, 152–158, https://doi.org/10.1016/j.apcata.2019.02.023.
60 Yang Y., Du Z., Huang Y., Lu F., Wang F., Gao J., and Xu J. (2013) Conversion of Furfural into Cyclopentanone over Ni–Cu Bimetallic Catalysts. Green Chemistry., 15 (7), 1932, https://doi.org/10.1039/c3gc37133f.
61 Wang Y., Sang S., Zhu W., Gao L., Xiao G. (2016) CuNi@C Catalysts with High Activity Derived from Metal–Organic Frameworks Precursor for Conversion of Furfural to Cyclopentanone. Chemical Engineering Journal., 299, 104–111, https://doi.org/10.1016/j.cej.2016.04.068.
62 Fulajtárová K., Hronec M., Liptaj T., Prónayová N., and Soták T. (2016) Catalytic Hydrogenation of Condensation Product of Furfural with Cyclopentanone Using Molecular Hydrogen and Formic Acid as Hydrogen Donor. J Taiwan Inst Chem Eng., 66, 137–142, https://doi.org/10.1016/j.jtice.2016.06.002.
63 Date N. S., Kondawar S. E., Chikate R. C., and Rode C. V. (2018) Single-Pot Reductive Rearrangement of Furfural to Cyclopentanone over Silica-Supported Pd Catalysts. ACS Omega., 3 (8), 9860–9871, https://doi.org/10.1021/acsomega.8b00980.
64 Kumar A., Shende D. Z., and Wasewar K. L. (2020) Production of Levulinic Acid: A Promising Building Block Material for Pharmaceutical and Food Industry. Mater Today Proc., 29, 790–793, https://doi.org/10.1016/j.matpr.2020.04.749.
65 González Maldonado G. M., Assary R. S., and Dumesic J., Curtiss L. A. (2012) Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution. Energy Environ Sci., 5 (5), 6981, https://doi.org/10.1039/c2ee03465d.
66 Gürbüz E. I., Wettstein S. G., and Dumesic J. A. (2012) Conversion of Hemicellulose to Furfural and Levulinic Acid Using Biphasic Reactors with Alkylphenol Solvents. ChemSusChem., 5 (2), 383–387, https://doi.org/10.1002/cssc.201100608.
67 Zhangabylov N. S., Dederer L. Yu., Gorbacheva L. B., Vasil’eva S. V., Terekhov A. S., and Adekenov S. M. (2004) Sesquiterpene Lactone Arglabin Influences DNA Synthesis in P388 Leukemia Cells in Vivo. Pharm Chem J., 38 (12), 651–653, https://doi.org/10.1007/s11094-005-0052-9.
68 Chen H., Wu G., Gao S., Guo R., Zhao Z., Yuan H., Liu S., Wu J., Lu X., Yuan X., Yu Z., Zu X., Xie N., Yang N., Hu Z., Sun Q., and Zhang W. (2017) Discovery of Potent Small-Molecule Inhibitors of Ubiquitin-Conjugating Enzyme UbcH5c from α-Santonin Derivatives. J Med Chem., 60 (16), 6828–6852, https://doi.org/10.1021/acs.jmedchem.6b01829.
69 Chen L. Z., Wu J., Li K., Wu Q. Q., Chen R., Liu X. H., and Ruan B. F. (2020) Novel Phthalide Derivatives: Synthesis and Anti-Inflammatory Activity in Vitro and in Vivo. Eur J Med Chem, 206, 112722. https://doi.org/10.1016/j.ejmech.2020.112722.
70 Li X., Lan X., and Wang T. (2016) Highly Selective Catalytic Conversion of Furfural to γ-Butyrolactone. Green Chemistry., 18 (3), 638–642, https://doi.org/10.1039/C5GC02411K.
71 Abdel-Raheem S. A. A., Drar A. M., Hussein B. R. M., Moustafa A. H. (2023) Some oxoimidazolidine and cyanoguanidine compounds: Toxicological efficacy and structure-activity relationships studies. Curr Chem Lett., 12 (4), 695–704, https://doi.org/10.5267/j.ccl.2023.5.005
72 Drar A. M., Abdel-Raheem S. A. A., Moustafa A. H., Hussein B. R. M. (2023) Studying the toxicity and structure-activity relationships of some synthesized polyfunctionalized pyrimidine compounds as potential insecticides. Curr Chem Lett., 12 (3), 499–508, https://doi.org/10.5267/j.ccl.2023.3.006
73 Sadowski M., Dresler E., Wróblewska A., Jasiński R. (2024) A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study. Molecules., 29 (20), 4876, https://doi.org/10.3390/molecules29204876