How to cite this paper
Zaki, K., Sbai, A., Bouachrine, M & Lakhlif, T. (2025). Regioselectivity study of 1,3-dipolar cycloaddition of 2-azido-N-(4-diazenylphenyl)acetamide with terminal alkyne through DFT analysis.Current Chemistry Letters, 14(1), 183-192.
Refrences
1. Huisgen, R. (1963) 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed. Engl. 2 (10), 565–598.
2. Singh, M. S.; Chowdhury, S.; Koley, S. (2016) Progress in 1,3-Dipolar Cycloadditions in the Recent Decade: An Update to Strategic Development towards the Arsenal of Organic Synthesis. Tetrahedron. 72 (13), 1603–1644.
3. Hashimoto, T.; Maruoka, K. (2015) Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chem. Rev. 115 (11), 5366–5412.
4. Wang, L.-J.; Tang, Y. (2014) Intermolecular 1,3-Dipolar Cycloadditions of Alkenes, Alkynes, and Allenes. In Comprehensive Organic Synthesis II. 4.22, 1342–1383.
5. Menon, R. S.; Nair, V. (2014) Intramolecular 1,3‐Dipolar Cycloadditions of Alkenes, Alkynes, and Allenes. In Comprehensive Organic Synthesis II. 4.21, 1281–1341.
6. Yousfi, Y.; Benchouk, W.; Mekelleche, S. M. (2023) Prediction of the Regioselectivity of the Ruthenium-Catalyzed [3+2] Cycloadditions of Benzyl Azide with Internal Alkynes Using Conceptual DFT Indices of Reactivity. Chem Heterocycl Comp. 59 (3), 118–127.
7. Dresler, E.; Woliński, P.; Wróblewska, A.; Jasiński, R. (2023) On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules. 28 (24), 8152.
8. Dresler, E.; Wróblewska, A.; Jasiński, R. (2022) Understanding the Regioselectivity and the Molecular Mechanism of [3 + 2] Cycloaddition Reactions between Nitrous Oxide and Conjugated Nitroalkenes: A DFT Computational Study. Molecules. 27 (23), 8441.
9. Zawadzińska, K.; Gadocha, Z.; Pabian, K.; Wróblewska, A.; Wielgus, E.; Jasiński, R. (2022) The First Examples of [3+2] Cycloadditions with the Participation of (E)-3,3,3-Tribromo-1-Nitroprop-1-Ene. Materials. 15 (21), 7584.
10. Umar, A. R.; Tia, R.; Adei, E. (2021) The 1,3-Dipolar Cycloaddition of Adamantine-Derived Nitrones with Maleimides: A Computational Study. Computational and Theoretical Chemistry. 1195, 113099.
11. Jasiński, R. (2015) In the Searching for Zwitterionic Intermediates on Reaction Paths of [3 + 2] Cycloaddition Reactions between 2,2,4,4-Tetramethyl-3-Thiocyclobutanone S-Methylide and Polymerizable Olefins. RSC Adv. 5 (122), 101045–101048.
12. Jasiński, R. (2015) A Stepwise, Zwitterionic Mechanism for the 1,3-Dipolar Cycloaddition between (Z)-C-4-Methoxyphenyl-N-Phenylnitrone and Gem-Chloronitroethene Catalysed by 1-Butyl-3-Methylimidazolium Ionic Liquid Cations. Tetrahedron Letters. 56 (3), 532–535.
13. Kaushik, C. P.; Pahwa, A.; Singh, D.; Kumar, K.; Luxmi, R. (2019) Efficient Synthesis, Antitubercular and Antimicrobial Evaluation of 1,4-Disubstituted 1,2,3-Triazoles with Amide Functionality. Monatsh Chem. 150 (6), 1127–1136.
14. Koubi Y., Hajji H., Moukhliss Y., El Khatabi K., El Masaoudy Y., Maghat H. Ajana M.A., Bouachrine M., Lakhlifi T. (2022) In Silico Studies of 1,4-Disubstituted 1,2,3-Triazole with Amide Functionality Antimicrobial Evaluation against Escherichia Coli Using 3D-QSAR, Molecular Docking, and ADMET Properties. Mor. J. Chem. 10(4), 689-702.
15. Aurell, M. J.; Domingo, L. R.; Pérez, P.; Contreras, R. (2004) A Theoretical Study on the Regioselectivity of 1,3-Dipolar Cycloadditions Using DFT-Based Reactivity Indexes. Tetrahedron. 60 (50), 11503–11509.
16. García, J. I.; Martínez-Merino, V.; Mayoral, J. A.; Salvatella, L. (1998) Density Functional Theory Study of a Lewis Acid Catalyzed Diels−Alder Reaction. The Butadiene + Acrolein Paradigm. J. Am. Chem. Soc. 120 (10), 2415–2420.
17. Birkholz, A. B.; Schlegel, H. B. (2015) Using Bonding to Guide Transition State Optimization. J. Comput. Chem. 36 (15), 1157–1166.
18. Wiberg, K. B. (1968) Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron. 24 (3), 1083–1096.
19. Lendvay, G. (1994) Characterization of the Progress of Chemical Reactions by Ab Initio Bond Orders. J. Phys. Chem. 98 (24), 6098–6104.
20. Geerlings, P.; De Proft, F.; Langenaeker, W. (2003) Conceptual Density Functional Theory. Chem. Rev. 103 (5), 1793–1874. https://doi.org/10.1021/cr990029p.
21. Domingo, L.; Ríos-Gutiérrez, M.; Pérez, P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules. 21 (6), 748.
22. Becke, A. D. (1993) Density‐functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics. 98 (7), 5648–5652.
23. Lee, C.; Yang, W.; Parr, R. G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 37 (2), 785–789.
24. Hehre, W. J., Ed. (1993) Ab Initio Molecular Orbital Theory, A Wiley-Interscience Publication; Wiley: New York.
25. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. (2010) A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. The Journal of Chemical Physics. 132 (15), 154104.
26. Pearson, R. G. (1988) Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorg. Chem. 27 (4), 734–740.
27. Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. (2002) Quantitative Characterization of the Global Electrophilicity Power of Common Diene/Dienophile Pairs in Diels–Alder Reactions. Tetrahedron. 58 (22), 4417–4423.
28. Parr, R. G.; Szentpály, L. v.; Liu, S. (1999) Electrophilicity Index. J. Am. Chem. Soc. 121 (9), 1922–1924.
29. Domingo, L. R.; Pérez, P. (2011) The Nucleophilicity N Index in Organic Chemistry. Org. Biomol. Chem. 9 (20), 7168.
30. Domingo, L. R.; Chamorro, E.; Pérez, P. (2008) Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem. 73 (12), 4615–4624.
31. Jaramillo, P.; Domingo, L. R.; Chamorro, E.; Pérez, P. (2008) A Further Exploration of a Nucleophilicity Index Based on the Gas-Phase Ionization Potentials. Journal of Molecular Structure: THEOCHEM. 865 (1–3), 68–72.
32. Domingo, L. R.; Pérez, P.; Sáez, J. A. (2013) Understanding the Local Reactivity in Polar Organic Reactions through Electrophilic and Nucleophilic Parr Functions. RSC Adv. 3 (5), 1486–1494.
33. Chamorro, E.; Pérez, P.; Domingo, L. R. (2013) On the Nature of Parr Functions to Predict the Most Reactive Sites along Organic Polar Reactions. Chemical Physics Letters. 582, 141–143.
2. Singh, M. S.; Chowdhury, S.; Koley, S. (2016) Progress in 1,3-Dipolar Cycloadditions in the Recent Decade: An Update to Strategic Development towards the Arsenal of Organic Synthesis. Tetrahedron. 72 (13), 1603–1644.
3. Hashimoto, T.; Maruoka, K. (2015) Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chem. Rev. 115 (11), 5366–5412.
4. Wang, L.-J.; Tang, Y. (2014) Intermolecular 1,3-Dipolar Cycloadditions of Alkenes, Alkynes, and Allenes. In Comprehensive Organic Synthesis II. 4.22, 1342–1383.
5. Menon, R. S.; Nair, V. (2014) Intramolecular 1,3‐Dipolar Cycloadditions of Alkenes, Alkynes, and Allenes. In Comprehensive Organic Synthesis II. 4.21, 1281–1341.
6. Yousfi, Y.; Benchouk, W.; Mekelleche, S. M. (2023) Prediction of the Regioselectivity of the Ruthenium-Catalyzed [3+2] Cycloadditions of Benzyl Azide with Internal Alkynes Using Conceptual DFT Indices of Reactivity. Chem Heterocycl Comp. 59 (3), 118–127.
7. Dresler, E.; Woliński, P.; Wróblewska, A.; Jasiński, R. (2023) On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules. 28 (24), 8152.
8. Dresler, E.; Wróblewska, A.; Jasiński, R. (2022) Understanding the Regioselectivity and the Molecular Mechanism of [3 + 2] Cycloaddition Reactions between Nitrous Oxide and Conjugated Nitroalkenes: A DFT Computational Study. Molecules. 27 (23), 8441.
9. Zawadzińska, K.; Gadocha, Z.; Pabian, K.; Wróblewska, A.; Wielgus, E.; Jasiński, R. (2022) The First Examples of [3+2] Cycloadditions with the Participation of (E)-3,3,3-Tribromo-1-Nitroprop-1-Ene. Materials. 15 (21), 7584.
10. Umar, A. R.; Tia, R.; Adei, E. (2021) The 1,3-Dipolar Cycloaddition of Adamantine-Derived Nitrones with Maleimides: A Computational Study. Computational and Theoretical Chemistry. 1195, 113099.
11. Jasiński, R. (2015) In the Searching for Zwitterionic Intermediates on Reaction Paths of [3 + 2] Cycloaddition Reactions between 2,2,4,4-Tetramethyl-3-Thiocyclobutanone S-Methylide and Polymerizable Olefins. RSC Adv. 5 (122), 101045–101048.
12. Jasiński, R. (2015) A Stepwise, Zwitterionic Mechanism for the 1,3-Dipolar Cycloaddition between (Z)-C-4-Methoxyphenyl-N-Phenylnitrone and Gem-Chloronitroethene Catalysed by 1-Butyl-3-Methylimidazolium Ionic Liquid Cations. Tetrahedron Letters. 56 (3), 532–535.
13. Kaushik, C. P.; Pahwa, A.; Singh, D.; Kumar, K.; Luxmi, R. (2019) Efficient Synthesis, Antitubercular and Antimicrobial Evaluation of 1,4-Disubstituted 1,2,3-Triazoles with Amide Functionality. Monatsh Chem. 150 (6), 1127–1136.
14. Koubi Y., Hajji H., Moukhliss Y., El Khatabi K., El Masaoudy Y., Maghat H. Ajana M.A., Bouachrine M., Lakhlifi T. (2022) In Silico Studies of 1,4-Disubstituted 1,2,3-Triazole with Amide Functionality Antimicrobial Evaluation against Escherichia Coli Using 3D-QSAR, Molecular Docking, and ADMET Properties. Mor. J. Chem. 10(4), 689-702.
15. Aurell, M. J.; Domingo, L. R.; Pérez, P.; Contreras, R. (2004) A Theoretical Study on the Regioselectivity of 1,3-Dipolar Cycloadditions Using DFT-Based Reactivity Indexes. Tetrahedron. 60 (50), 11503–11509.
16. García, J. I.; Martínez-Merino, V.; Mayoral, J. A.; Salvatella, L. (1998) Density Functional Theory Study of a Lewis Acid Catalyzed Diels−Alder Reaction. The Butadiene + Acrolein Paradigm. J. Am. Chem. Soc. 120 (10), 2415–2420.
17. Birkholz, A. B.; Schlegel, H. B. (2015) Using Bonding to Guide Transition State Optimization. J. Comput. Chem. 36 (15), 1157–1166.
18. Wiberg, K. B. (1968) Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron. 24 (3), 1083–1096.
19. Lendvay, G. (1994) Characterization of the Progress of Chemical Reactions by Ab Initio Bond Orders. J. Phys. Chem. 98 (24), 6098–6104.
20. Geerlings, P.; De Proft, F.; Langenaeker, W. (2003) Conceptual Density Functional Theory. Chem. Rev. 103 (5), 1793–1874. https://doi.org/10.1021/cr990029p.
21. Domingo, L.; Ríos-Gutiérrez, M.; Pérez, P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules. 21 (6), 748.
22. Becke, A. D. (1993) Density‐functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics. 98 (7), 5648–5652.
23. Lee, C.; Yang, W.; Parr, R. G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 37 (2), 785–789.
24. Hehre, W. J., Ed. (1993) Ab Initio Molecular Orbital Theory, A Wiley-Interscience Publication; Wiley: New York.
25. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. (2010) A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. The Journal of Chemical Physics. 132 (15), 154104.
26. Pearson, R. G. (1988) Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorg. Chem. 27 (4), 734–740.
27. Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. (2002) Quantitative Characterization of the Global Electrophilicity Power of Common Diene/Dienophile Pairs in Diels–Alder Reactions. Tetrahedron. 58 (22), 4417–4423.
28. Parr, R. G.; Szentpály, L. v.; Liu, S. (1999) Electrophilicity Index. J. Am. Chem. Soc. 121 (9), 1922–1924.
29. Domingo, L. R.; Pérez, P. (2011) The Nucleophilicity N Index in Organic Chemistry. Org. Biomol. Chem. 9 (20), 7168.
30. Domingo, L. R.; Chamorro, E.; Pérez, P. (2008) Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem. 73 (12), 4615–4624.
31. Jaramillo, P.; Domingo, L. R.; Chamorro, E.; Pérez, P. (2008) A Further Exploration of a Nucleophilicity Index Based on the Gas-Phase Ionization Potentials. Journal of Molecular Structure: THEOCHEM. 865 (1–3), 68–72.
32. Domingo, L. R.; Pérez, P.; Sáez, J. A. (2013) Understanding the Local Reactivity in Polar Organic Reactions through Electrophilic and Nucleophilic Parr Functions. RSC Adv. 3 (5), 1486–1494.
33. Chamorro, E.; Pérez, P.; Domingo, L. R. (2013) On the Nature of Parr Functions to Predict the Most Reactive Sites along Organic Polar Reactions. Chemical Physics Letters. 582, 141–143.