How to cite this paper
Kula, K., Bierczak, P., Miernik, K., Synkiewicz-Musialska, B & Gaurav, G. (2025). Experimental and theoretical correlations in (Z)-C-aryl-N-methylnitrones.Current Chemistry Letters, 14(1), 149-158.
Refrences
1 Murahashi S. I., and Imada Y. (2019) Synthesis and transformations of nitrones for organic synthesis.
Chem. Rev., 119 (7) 4684-4716.
2 Leifert D., and Studer A. (2023) Organic synthesis using nitroxides. Chem. Rev., 123 (16) 10302-10380.
3 Kula K., Dresler E., Demchuk O. M., and Jasiński, R. (2015) New aldimine N-oxides as precursors for preparation of heterocycles with potential biological activity. Przem. Chem., 94 (1) 1385-1387.
4 Merino P. (2005) New developments in nucleophilic additions to nitrones. C. R. Chim., 8 (5) 775-788.
5 Loi N., Hung P., Chinh D., and Phuong, P. (2023) Studying the toxicity and structure-activity relationships of some synthesized polyfunctionalized pyrimidine compounds as potential insecticides. Curr. Chem. Lett., 12 (3) 489-498.
6 Abdel-Raheem S., Drar A., Hussein B., and Moustafa A. (2023) Some oxoimidazolidine and cyanoguanidine compounds: Toxicological efficacy and structure-activity relationships studies. Curr. Chem. Lett., 12 (4) 695-704.
7 Villamena F. A., Das A., and Nash K. M. (2012) Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med. Chem., 4 (9) 1171-1207.
8 Janzen E. G. (1971) Spin trapping. Acc. Chem. Res., 4 (1) 31-40.
9 Boyd S. L., and Boyd, R. J. (1994) A theoretical study of spin trapping by nitrone: trapping of hydrogen, methyl, hydroxyl, and peroxyl radicals. J. Phys. Chem., 98 (45) 11705-11713.
10 Novelli G. P., Angiolini P., Tani R., Consales G., and Bordi L. (1986) Phenyl-t-butyl-nitrone is active against traumatic shock in rats. Free Radical Res. Commun., 1 (5) 321-327.
11 Zhao Z., Cheng M., Maples K. R., Ma J. Y., and Buchan A. M. (2001) NXY-059, a novel free radical trapping compound, reduces cortical infarction after permanent focal cerebral ischemia in the rat. Brain Res., 909 (1) 46-50.
12 Doggrell S. A. (2006) Nitrone spin on cerebral ischemia. Curr. Opin. Investig. Drugs., 7 (1) 20-24.
13 Datta P. K., Reddy S., Sharma M., and Lianos E. A. (2006) Differential nephron HO-1 expression following glomerular epithelial cell injury. Nephron. Exp. Nephrol., 103 (4) 131-138.
14 Mandal M. N., Moiseyev G. P., Elliott M. H., Kasus-Jacobi A., Li X., Chen H., Zheng L., Nikolaeva O., Floyd R. A., Ma J. X., and Anderson R. E. (2011) Alpha-phenyl-N-tert-butylnitrone (PBN) prevents light-induced degeneration of the retina by inhibiting RPE65 protein isomerohydrolase activity. J. Biol. Chem., 286 (37) 32491-32501.
15 Willis C. L., and Ray D. E. (2007) Antioxidants attenuate MK-801-induced cortical neurotoxicity in the rat. Neurotoxicology. 28 (1) 161-167.
16 He T., Doblas S., Saunders D., Casteel R., Lerner M., Ritchey J. W., Snider T., Floyd R. A., and Towner, R. A. (2011) Effects of PBN and OKN007 in rodent glioma models assessed by 1H MR spectroscopy. Free Radic. Biol. Med., 51 (2) 490-502.
17 Inoue Y., Asanuma T., Smith N., Saunders D., Oblander J., Kotake Y., Floyd R. A., and Towner, R. A. (2007) Modulation of Fas-FasL related apoptosis by PBN in the early phases of choline deficient diet-mediated hepatocarcinogenesis in rats. Free Radic. Res., 41 (9) 972-980.
18 Zuo L., Chen Y. R., Reyes L. A., Lee H. L., Chen C. L., Villamena F. A., and Zweier, J. L. (2009)
The radical trap 5,5-dimethyl-1-pyrroline N-oxide exerts dose-dependent protection against myocardial ischemia-reperfusion injury through preservation of mitochondrial electron transport. J. Pharmacol. Exp. Ther., 329 (2) 515-523.
19 Yoshii H., Yoshii Y., Asai T., Furukawa T., Takaichi S., and Fujibayashi Y. (2012) Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production. Biochem. Biophys. Res. Commun., 417 (1) 640-645.
20 Bosnjakovic A., and Schlick S. (2006) Spin trapping by 5,5-dimethylpyrroline-N-oxide in Fenton media in the presence of nafion perfluorinated membranes: limitations and potential. J. Phys. Chem. B., 110 (22) 10720-10728.
21 Ionita P., Conte M., Gilbert B. C., and Chechik V. (2007) Gold nanoparticle-initiated free radical oxidations and halogen abstractions. Org. Biomol. Chem., 5 (21) 3504-3509.
22 Fu H., Zhang L., Zhang S., Zhu Y., and Zhao J. (2006) Electron spin resonance spin-trapping detection of radical intermediates in N-doped TiO2-assisted photodegradation of 4-chlorophenol. J. Phys. Chem. B., 110 (7) 3061-3065.
23 Ríos‐Gutiérrez M., and Domingo L. R. (2019) Unravelling the mysteries of the [3+2] cycloaddition reactions. Eur. J. Org. Chem., 2 267-282.
24 Padwa A., and Bur S. (2016) Asymmetric reactions employing 1,3-dipoles. Chem. Heterocycl. Compd., 52 (9) 616-626.
25 Sirotkina E. V., Efremova M. M. Starova G. L. Kuznetsov M. A., and Molchanov A. P. (2020) Cycloaddition of nitrones to 1,3-diarylpropenones and subsequent transformations of the resulting isoxazolidines. Chem. Heterocycl. Compd., 56 (9) 1193-1201.
26 Sajadikhah S. S., and Didehban K. (2023) Synthesis of substituted isoxazolidines (microreview). Chem. Heterocycl. Compd., 59 (9) 640-642.
27 Yıldırım A. (2020) Diastereoselective thermal [3+2] cycloaddition reactions of nitrone possessing an amide functional group as hydrogen bond donor/acceptor. Chem. Heterocycl. Compd., 56 (3) 365-370.
28 Kula K., and Sadowski M. (2023) Regio-and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1-(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem. Heterocycl. Compd., 59 (3) 138-144.
29 Dresler E., Wróblewska A., and Jasiński R. (2024) Energetic Aspects and Molecular Mechanism of 3-Nitro-substituted 2-Isoxazolines Formation via Nitrile N-Oxide [3+2] Cycloaddition: An MEDT Computational Study. Molecules, 29 (13) 3042.
30 Hammett L. P. (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc., 59 (1) 96-103.
31 Taft R. W. (1960) Sigma values from Reactivities1. J. Phys. Chem., 64 (12) 1805-1815.
32 Brown H. C., and Okamoto Y. (1958) Electrophilic substituent constants. J. Am. Chem. Soc., 80 (18) 4979-4987.
33 Exner O. (1966) Studies on the inductive effect. V. Separation of inductive and mesomeric effects in meta and para benzene derivatives. Collect. Czech. Chem. Commun., 31 (1) 65-89.
34 SwissADME. Available online: http://www.swissadme.ch/ (accessed on 12 July 2024).
35 Lipinski C.A., Lombardo F., Dominy B. W., and Feeney P. J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 46 (1) 3-26.
36 PASS Online. Available online: http://www.way2drug.com/passonline/ (accessed on 12 July 2024).
37 Soldaini G., Cardona F., and Goti A. (2007) Catalytic oxidation of imines based on methyltrioxorhenium/urea hydrogen peroxide: A mild and easy chemo-and regioselective entry to nitrones. Org. Lett., 9 (3) 473-476.
38 Tang C., Shao J., Si C., Yang X., Hu X., Li P., and Wang X. (2024) Discovery of indole-3-acetic acid derivatives containing 1,3,4-thiadiazole thioether and amide moieties as novel antibacterial agents. Chem. Heterocycl. Compd., 60 (1/2) 92-98.
39 Mitsui H., Zenki S. I., Shiota T., and Murahashi S. I. (1984) Tungstate catalysed oxidation of secondary amines with hydrogen peroxide. A novel transformation of secondary amines into nitrones. J. Chem. Soc. Chem. Commun., 13 874-875.
40 Izmest’ev A. N., Isakov S. S., Kravchenko A. N., and Gazieva G. A. (2024) The synthesis and antitumor activity of novel 1-alkyl-3-phenyland 3-alkyl-1-phenylimidazothiazolotriazines. Chem. Heterocycl. Compd., 60 (3/4) 133-137.
41 Mohammed J. H., and Salih N. A. M. (2022) Synthesis and characterization of some new nitrones derivatives and screening their biological activities. J. Zhejiang Univ. Sci., 10 (4) 268-273.
42 Gomonov K. A., Pelipko V. V., Litvinov I. A., Baichurin R. I., and Makarenko S. V. (2024) Synthesis and structure of new substituted furan-3-carboxylate hydrazones. Chem. Heterocycl. Compd., 60 (3/4) 196-204.
43 Tikhomolova A. S., Mamleeva Z. V., and Egorova A. Y. (2024) An efficient synthesis of (E)-3-[(dimethylamino) methylidene] furan-2 (3H)-thiones and transamination reactions thereof. Chem. Heterocycl. Compd., 60 (3) 138-142.
44 Domingo L. R., Ríos-Gutiérrez M., and Pérez P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules, 21 (6) 748.
45 Ameur S., Barhoumi A., Ríos-Gutiérrez M., Aitouna A. O., Abdallaoui H. E. A. E., Mazoir N., Belghiti M. E., Syed A., Zeroual A., and Domingo L. R. (2023) A MEDT study of the mechanism and selectivity of the hetero-Diels–Alder reaction between 3-benzoylpyrrolo[1,2-c][1,4]-benzoxazine-1,2,4-trione and vinyl acetate. Chem. Heterocycl. Compd., 59 (3) 165-170.
46 Raji H., Aitouna A. O., Barhoumi A., Hammal R., Chekroun A., Zeroual A., Benharref A. and Mazoir, N. (2023) [2+1] Cycloaddition reaction of α-atlantone with m-CPBA in the light of experimental and MEDT quantum-chemical study. Chem. Heterocycl. Compd., 59 (3) 112-117.
47 Messaadia S., Nacereddine A. K., and Djerourou A. (2023) Exploring the factors controlling the mechanism and the high stereoselectivity of the polar [3+ 2] cycloaddition reaction of the N, N'-cyclic azomethine imine with 3-nitro-2-phenyl-2 H-chromene. A molecular electron density theory study. Chem. Heterocycl. Compd., 59 (3) 128-137.
48 Abdoul-Hakim M., Idrissi K. E., Zeroual A., and Garmes H. (2023) Investigation of the solvent effect, regioselectivity, and the mechanism of the cycloaddition reaction between 2-chlorobenzimidazole and benzonitrile oxide. Chem. Heterocycl. Compd., 59 (3) 155-164.
49 Jaffe H. H. (1953) A reexamination of the Hammett equation. Chem. Rev., 53 (2) 191-261.
50 Pavlinac I. B., Starčević K., Persoons L., Banjanac M., Radovanović V., Daelemans D., and Hranjec M. (2024) Novel iminocoumarin imidazo[4,5-b]pyridine derivatives: design, synthesis, and biological evaluation. Chem. Heterocycl. Compd., 60 (1/2) 205-208.
51 Sharapov A. D., Fatykhov R. F., and Khalymbadzha I. A. (2024) Synthesis of fluorophores based on benzo[g]coumarin framework (microreview). Chem. Heterocycl. Compd., 60 (1/2) 26-28.
52 Acharjee N., Banerji A., Banerjee M., and Das T. K. (2009) 1,3-Dipolar cycloadditions. Part XVII: Experimental and theoretical spectroscopic investigations of C-aryl-N-methyl nitrones. Indian J. Chem., 48 (12) 1627-1637.
53 Tyrrell E., Allen J., Jones K., and Beauchet R. (2005) Asymmetric 1,3-dipolar cycloaddition reactions of nitrones with (S)-(-)-4-benzyl-N-methacryloyl-2-oxazolidinone. Synthesis, 14 2393-2399.
54 Vorontsova S. K., Scherbakov A. M., Minyaev M. E., Menchikov L. G., and Zavarzin I. V. (2024) The synthesis of furazano-and thiadiazolopyrazine steroids and their antiproliferative activity. Chem. Heterocycl. Compd., 60 (3/4) 205-208.
55 Komkov A. V., Menchikov L. G., Dmitrenok A. S., Kolotyrkina N. G., and Zavarzin I. V. (2024) A method for the synthesis of spiro-1, 3, 4-thiadiazolines. Chem. Heterocycl. Compd., 60 (3/4) 183-189.
56 Dubina T. F., Kosarevych A. V., Kucher O. V., Sosunovych B. S., Smolii O. B., Vashchenko B. V., and Grygorenko O. O. (2024) Synthesis and reactions of novel imidazo [4, 5-b] pyridine building blocks. Chem. Heterocycl. Compd., 60 (3/4) 175-182.
57 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T. J., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima Y., Honda O., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas M. C., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., and Pople J. A. (2009) Gaussian 09 rev A.1 Gaussian Inc. Wallingford CT, USA.
58 Tirado-Rives J., and Jorgensen W. L. (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput., 4 (2) 297-306.
59 Petersson A., Bennett A., Tensfeldt T. G., Al‐Laham M. A., Shirley W. A., and Mantzaris J. (1988) A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. J. Chem. Phys., 89 (4) 2193-2218.
60 Mondal A., and Acharjee N. (2023) Unveiling the exclusive stereo and site selectivity in [3+2] cycloaddition reactions of a tricyclic strained alkene with nitrile oxides from the molecular electron density theory perspective. Chem. Heterocycl. Compd., 59 (3) 145-154.
61 Yousfi Y., Benchouk W. and Mekelleche S. M. (2023) Prediction of the regioselectivity of the ruthenium-catalyzed [3+2] cycloadditions of benzyl azide with internal alkynes using conceptual DFT indices of reactivity. Chem. Heterocycl. Compd., 59 (3) 118-127.
62 Woliński P., Kącka-Zych A., Dziuk B., Ejsmont K., Łapczuk-Krygier A., and Dresler E. (2019) The structural aspects of the transformation of 3-nitroisoxazoline-2-oxide to 1-aza-2,8-dioxabicyclo[3.3.0]octane derivatives: Experimental and MEDT theoretical study. J. Mol. Struct., 1192 27-34;
63 Siadati S. A., Kula K., and Babanezhad E. (2019) The possibility of a two-step oxidation of the surface of C20 fullerene by a single molecule of nitric (V) acid. Chem. Rev. Lett., 2 (1) 2-6.
64 Zawadzińska K., and Kula K. (2021) Application of β-phosphorylated nitroethenes in [3+2] cycloaddition reactions involving benzonitrile N-oxide in the light of DFT computational study. Organics, 2 (1) 26-37.
65 Łapczuk-Krygier A., Jaśkowska J., and Jasiński R. (2018) The influence of Lewis acid catalyst on the kinetic and molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole: DFT computational study. Chem. Heterocycl. Comp., 54 1172-1174.
66 Chafaa F., and Nacereddine A. K. (2023) A molecular electron density theory study of mechanism and selectivity of the intramolecular [3+2] cycloaddition reaction of a nitrone–vinylphosphonate adduct. Chem. Heterocycl. Compd., 59 (3) 171-178.
67 Domingo L. R., Kula K., Rios-Gutierrez M., and Jasinski R. (2021) Understanding the Participation of Fluorinated Azomethine Ylides in Carbenoid-Type [3+ 2] Cycloaddition Reactions with Ynal Systems: A Molecular Electron Density Theory Study. J. Org. Chem., 86 (18) 12644-12653.
68 Domingo L. R., Kula K., and Ríos‐Gutiérrez M. (2020) Unveiling the reactivity of cyclic azomethine ylides in [3+2] cycloaddition reactions within the molecular electron density theory. Eur. J. Org. Chem., 37 5938-5948.
69 Parr R. G., Szentpály L., and Liu S. (1999) Electrophilicity index. J. Am. Chem. Soc., 121 (9) 1922-1924.
70 Parr R.G., Gadre S. R., and Bartolotti L. J. (1979) Local density functional theory of atoms and molecules. Proc. Natl. Acad. Sci., 76 (6) 2522-2526.
Chem. Rev., 119 (7) 4684-4716.
2 Leifert D., and Studer A. (2023) Organic synthesis using nitroxides. Chem. Rev., 123 (16) 10302-10380.
3 Kula K., Dresler E., Demchuk O. M., and Jasiński, R. (2015) New aldimine N-oxides as precursors for preparation of heterocycles with potential biological activity. Przem. Chem., 94 (1) 1385-1387.
4 Merino P. (2005) New developments in nucleophilic additions to nitrones. C. R. Chim., 8 (5) 775-788.
5 Loi N., Hung P., Chinh D., and Phuong, P. (2023) Studying the toxicity and structure-activity relationships of some synthesized polyfunctionalized pyrimidine compounds as potential insecticides. Curr. Chem. Lett., 12 (3) 489-498.
6 Abdel-Raheem S., Drar A., Hussein B., and Moustafa A. (2023) Some oxoimidazolidine and cyanoguanidine compounds: Toxicological efficacy and structure-activity relationships studies. Curr. Chem. Lett., 12 (4) 695-704.
7 Villamena F. A., Das A., and Nash K. M. (2012) Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med. Chem., 4 (9) 1171-1207.
8 Janzen E. G. (1971) Spin trapping. Acc. Chem. Res., 4 (1) 31-40.
9 Boyd S. L., and Boyd, R. J. (1994) A theoretical study of spin trapping by nitrone: trapping of hydrogen, methyl, hydroxyl, and peroxyl radicals. J. Phys. Chem., 98 (45) 11705-11713.
10 Novelli G. P., Angiolini P., Tani R., Consales G., and Bordi L. (1986) Phenyl-t-butyl-nitrone is active against traumatic shock in rats. Free Radical Res. Commun., 1 (5) 321-327.
11 Zhao Z., Cheng M., Maples K. R., Ma J. Y., and Buchan A. M. (2001) NXY-059, a novel free radical trapping compound, reduces cortical infarction after permanent focal cerebral ischemia in the rat. Brain Res., 909 (1) 46-50.
12 Doggrell S. A. (2006) Nitrone spin on cerebral ischemia. Curr. Opin. Investig. Drugs., 7 (1) 20-24.
13 Datta P. K., Reddy S., Sharma M., and Lianos E. A. (2006) Differential nephron HO-1 expression following glomerular epithelial cell injury. Nephron. Exp. Nephrol., 103 (4) 131-138.
14 Mandal M. N., Moiseyev G. P., Elliott M. H., Kasus-Jacobi A., Li X., Chen H., Zheng L., Nikolaeva O., Floyd R. A., Ma J. X., and Anderson R. E. (2011) Alpha-phenyl-N-tert-butylnitrone (PBN) prevents light-induced degeneration of the retina by inhibiting RPE65 protein isomerohydrolase activity. J. Biol. Chem., 286 (37) 32491-32501.
15 Willis C. L., and Ray D. E. (2007) Antioxidants attenuate MK-801-induced cortical neurotoxicity in the rat. Neurotoxicology. 28 (1) 161-167.
16 He T., Doblas S., Saunders D., Casteel R., Lerner M., Ritchey J. W., Snider T., Floyd R. A., and Towner, R. A. (2011) Effects of PBN and OKN007 in rodent glioma models assessed by 1H MR spectroscopy. Free Radic. Biol. Med., 51 (2) 490-502.
17 Inoue Y., Asanuma T., Smith N., Saunders D., Oblander J., Kotake Y., Floyd R. A., and Towner, R. A. (2007) Modulation of Fas-FasL related apoptosis by PBN in the early phases of choline deficient diet-mediated hepatocarcinogenesis in rats. Free Radic. Res., 41 (9) 972-980.
18 Zuo L., Chen Y. R., Reyes L. A., Lee H. L., Chen C. L., Villamena F. A., and Zweier, J. L. (2009)
The radical trap 5,5-dimethyl-1-pyrroline N-oxide exerts dose-dependent protection against myocardial ischemia-reperfusion injury through preservation of mitochondrial electron transport. J. Pharmacol. Exp. Ther., 329 (2) 515-523.
19 Yoshii H., Yoshii Y., Asai T., Furukawa T., Takaichi S., and Fujibayashi Y. (2012) Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production. Biochem. Biophys. Res. Commun., 417 (1) 640-645.
20 Bosnjakovic A., and Schlick S. (2006) Spin trapping by 5,5-dimethylpyrroline-N-oxide in Fenton media in the presence of nafion perfluorinated membranes: limitations and potential. J. Phys. Chem. B., 110 (22) 10720-10728.
21 Ionita P., Conte M., Gilbert B. C., and Chechik V. (2007) Gold nanoparticle-initiated free radical oxidations and halogen abstractions. Org. Biomol. Chem., 5 (21) 3504-3509.
22 Fu H., Zhang L., Zhang S., Zhu Y., and Zhao J. (2006) Electron spin resonance spin-trapping detection of radical intermediates in N-doped TiO2-assisted photodegradation of 4-chlorophenol. J. Phys. Chem. B., 110 (7) 3061-3065.
23 Ríos‐Gutiérrez M., and Domingo L. R. (2019) Unravelling the mysteries of the [3+2] cycloaddition reactions. Eur. J. Org. Chem., 2 267-282.
24 Padwa A., and Bur S. (2016) Asymmetric reactions employing 1,3-dipoles. Chem. Heterocycl. Compd., 52 (9) 616-626.
25 Sirotkina E. V., Efremova M. M. Starova G. L. Kuznetsov M. A., and Molchanov A. P. (2020) Cycloaddition of nitrones to 1,3-diarylpropenones and subsequent transformations of the resulting isoxazolidines. Chem. Heterocycl. Compd., 56 (9) 1193-1201.
26 Sajadikhah S. S., and Didehban K. (2023) Synthesis of substituted isoxazolidines (microreview). Chem. Heterocycl. Compd., 59 (9) 640-642.
27 Yıldırım A. (2020) Diastereoselective thermal [3+2] cycloaddition reactions of nitrone possessing an amide functional group as hydrogen bond donor/acceptor. Chem. Heterocycl. Compd., 56 (3) 365-370.
28 Kula K., and Sadowski M. (2023) Regio-and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1-(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem. Heterocycl. Compd., 59 (3) 138-144.
29 Dresler E., Wróblewska A., and Jasiński R. (2024) Energetic Aspects and Molecular Mechanism of 3-Nitro-substituted 2-Isoxazolines Formation via Nitrile N-Oxide [3+2] Cycloaddition: An MEDT Computational Study. Molecules, 29 (13) 3042.
30 Hammett L. P. (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc., 59 (1) 96-103.
31 Taft R. W. (1960) Sigma values from Reactivities1. J. Phys. Chem., 64 (12) 1805-1815.
32 Brown H. C., and Okamoto Y. (1958) Electrophilic substituent constants. J. Am. Chem. Soc., 80 (18) 4979-4987.
33 Exner O. (1966) Studies on the inductive effect. V. Separation of inductive and mesomeric effects in meta and para benzene derivatives. Collect. Czech. Chem. Commun., 31 (1) 65-89.
34 SwissADME. Available online: http://www.swissadme.ch/ (accessed on 12 July 2024).
35 Lipinski C.A., Lombardo F., Dominy B. W., and Feeney P. J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 46 (1) 3-26.
36 PASS Online. Available online: http://www.way2drug.com/passonline/ (accessed on 12 July 2024).
37 Soldaini G., Cardona F., and Goti A. (2007) Catalytic oxidation of imines based on methyltrioxorhenium/urea hydrogen peroxide: A mild and easy chemo-and regioselective entry to nitrones. Org. Lett., 9 (3) 473-476.
38 Tang C., Shao J., Si C., Yang X., Hu X., Li P., and Wang X. (2024) Discovery of indole-3-acetic acid derivatives containing 1,3,4-thiadiazole thioether and amide moieties as novel antibacterial agents. Chem. Heterocycl. Compd., 60 (1/2) 92-98.
39 Mitsui H., Zenki S. I., Shiota T., and Murahashi S. I. (1984) Tungstate catalysed oxidation of secondary amines with hydrogen peroxide. A novel transformation of secondary amines into nitrones. J. Chem. Soc. Chem. Commun., 13 874-875.
40 Izmest’ev A. N., Isakov S. S., Kravchenko A. N., and Gazieva G. A. (2024) The synthesis and antitumor activity of novel 1-alkyl-3-phenyland 3-alkyl-1-phenylimidazothiazolotriazines. Chem. Heterocycl. Compd., 60 (3/4) 133-137.
41 Mohammed J. H., and Salih N. A. M. (2022) Synthesis and characterization of some new nitrones derivatives and screening their biological activities. J. Zhejiang Univ. Sci., 10 (4) 268-273.
42 Gomonov K. A., Pelipko V. V., Litvinov I. A., Baichurin R. I., and Makarenko S. V. (2024) Synthesis and structure of new substituted furan-3-carboxylate hydrazones. Chem. Heterocycl. Compd., 60 (3/4) 196-204.
43 Tikhomolova A. S., Mamleeva Z. V., and Egorova A. Y. (2024) An efficient synthesis of (E)-3-[(dimethylamino) methylidene] furan-2 (3H)-thiones and transamination reactions thereof. Chem. Heterocycl. Compd., 60 (3) 138-142.
44 Domingo L. R., Ríos-Gutiérrez M., and Pérez P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules, 21 (6) 748.
45 Ameur S., Barhoumi A., Ríos-Gutiérrez M., Aitouna A. O., Abdallaoui H. E. A. E., Mazoir N., Belghiti M. E., Syed A., Zeroual A., and Domingo L. R. (2023) A MEDT study of the mechanism and selectivity of the hetero-Diels–Alder reaction between 3-benzoylpyrrolo[1,2-c][1,4]-benzoxazine-1,2,4-trione and vinyl acetate. Chem. Heterocycl. Compd., 59 (3) 165-170.
46 Raji H., Aitouna A. O., Barhoumi A., Hammal R., Chekroun A., Zeroual A., Benharref A. and Mazoir, N. (2023) [2+1] Cycloaddition reaction of α-atlantone with m-CPBA in the light of experimental and MEDT quantum-chemical study. Chem. Heterocycl. Compd., 59 (3) 112-117.
47 Messaadia S., Nacereddine A. K., and Djerourou A. (2023) Exploring the factors controlling the mechanism and the high stereoselectivity of the polar [3+ 2] cycloaddition reaction of the N, N'-cyclic azomethine imine with 3-nitro-2-phenyl-2 H-chromene. A molecular electron density theory study. Chem. Heterocycl. Compd., 59 (3) 128-137.
48 Abdoul-Hakim M., Idrissi K. E., Zeroual A., and Garmes H. (2023) Investigation of the solvent effect, regioselectivity, and the mechanism of the cycloaddition reaction between 2-chlorobenzimidazole and benzonitrile oxide. Chem. Heterocycl. Compd., 59 (3) 155-164.
49 Jaffe H. H. (1953) A reexamination of the Hammett equation. Chem. Rev., 53 (2) 191-261.
50 Pavlinac I. B., Starčević K., Persoons L., Banjanac M., Radovanović V., Daelemans D., and Hranjec M. (2024) Novel iminocoumarin imidazo[4,5-b]pyridine derivatives: design, synthesis, and biological evaluation. Chem. Heterocycl. Compd., 60 (1/2) 205-208.
51 Sharapov A. D., Fatykhov R. F., and Khalymbadzha I. A. (2024) Synthesis of fluorophores based on benzo[g]coumarin framework (microreview). Chem. Heterocycl. Compd., 60 (1/2) 26-28.
52 Acharjee N., Banerji A., Banerjee M., and Das T. K. (2009) 1,3-Dipolar cycloadditions. Part XVII: Experimental and theoretical spectroscopic investigations of C-aryl-N-methyl nitrones. Indian J. Chem., 48 (12) 1627-1637.
53 Tyrrell E., Allen J., Jones K., and Beauchet R. (2005) Asymmetric 1,3-dipolar cycloaddition reactions of nitrones with (S)-(-)-4-benzyl-N-methacryloyl-2-oxazolidinone. Synthesis, 14 2393-2399.
54 Vorontsova S. K., Scherbakov A. M., Minyaev M. E., Menchikov L. G., and Zavarzin I. V. (2024) The synthesis of furazano-and thiadiazolopyrazine steroids and their antiproliferative activity. Chem. Heterocycl. Compd., 60 (3/4) 205-208.
55 Komkov A. V., Menchikov L. G., Dmitrenok A. S., Kolotyrkina N. G., and Zavarzin I. V. (2024) A method for the synthesis of spiro-1, 3, 4-thiadiazolines. Chem. Heterocycl. Compd., 60 (3/4) 183-189.
56 Dubina T. F., Kosarevych A. V., Kucher O. V., Sosunovych B. S., Smolii O. B., Vashchenko B. V., and Grygorenko O. O. (2024) Synthesis and reactions of novel imidazo [4, 5-b] pyridine building blocks. Chem. Heterocycl. Compd., 60 (3/4) 175-182.
57 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T. J., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima Y., Honda O., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas M. C., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., and Pople J. A. (2009) Gaussian 09 rev A.1 Gaussian Inc. Wallingford CT, USA.
58 Tirado-Rives J., and Jorgensen W. L. (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput., 4 (2) 297-306.
59 Petersson A., Bennett A., Tensfeldt T. G., Al‐Laham M. A., Shirley W. A., and Mantzaris J. (1988) A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. J. Chem. Phys., 89 (4) 2193-2218.
60 Mondal A., and Acharjee N. (2023) Unveiling the exclusive stereo and site selectivity in [3+2] cycloaddition reactions of a tricyclic strained alkene with nitrile oxides from the molecular electron density theory perspective. Chem. Heterocycl. Compd., 59 (3) 145-154.
61 Yousfi Y., Benchouk W. and Mekelleche S. M. (2023) Prediction of the regioselectivity of the ruthenium-catalyzed [3+2] cycloadditions of benzyl azide with internal alkynes using conceptual DFT indices of reactivity. Chem. Heterocycl. Compd., 59 (3) 118-127.
62 Woliński P., Kącka-Zych A., Dziuk B., Ejsmont K., Łapczuk-Krygier A., and Dresler E. (2019) The structural aspects of the transformation of 3-nitroisoxazoline-2-oxide to 1-aza-2,8-dioxabicyclo[3.3.0]octane derivatives: Experimental and MEDT theoretical study. J. Mol. Struct., 1192 27-34;
63 Siadati S. A., Kula K., and Babanezhad E. (2019) The possibility of a two-step oxidation of the surface of C20 fullerene by a single molecule of nitric (V) acid. Chem. Rev. Lett., 2 (1) 2-6.
64 Zawadzińska K., and Kula K. (2021) Application of β-phosphorylated nitroethenes in [3+2] cycloaddition reactions involving benzonitrile N-oxide in the light of DFT computational study. Organics, 2 (1) 26-37.
65 Łapczuk-Krygier A., Jaśkowska J., and Jasiński R. (2018) The influence of Lewis acid catalyst on the kinetic and molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole: DFT computational study. Chem. Heterocycl. Comp., 54 1172-1174.
66 Chafaa F., and Nacereddine A. K. (2023) A molecular electron density theory study of mechanism and selectivity of the intramolecular [3+2] cycloaddition reaction of a nitrone–vinylphosphonate adduct. Chem. Heterocycl. Compd., 59 (3) 171-178.
67 Domingo L. R., Kula K., Rios-Gutierrez M., and Jasinski R. (2021) Understanding the Participation of Fluorinated Azomethine Ylides in Carbenoid-Type [3+ 2] Cycloaddition Reactions with Ynal Systems: A Molecular Electron Density Theory Study. J. Org. Chem., 86 (18) 12644-12653.
68 Domingo L. R., Kula K., and Ríos‐Gutiérrez M. (2020) Unveiling the reactivity of cyclic azomethine ylides in [3+2] cycloaddition reactions within the molecular electron density theory. Eur. J. Org. Chem., 37 5938-5948.
69 Parr R. G., Szentpály L., and Liu S. (1999) Electrophilicity index. J. Am. Chem. Soc., 121 (9) 1922-1924.
70 Parr R.G., Gadre S. R., and Bartolotti L. J. (1979) Local density functional theory of atoms and molecules. Proc. Natl. Acad. Sci., 76 (6) 2522-2526.