How to cite this paper
Litvinchuk, M., Bentya, A., Shishkina, S & Vov, M. (2025). Synthesis and some chemical transformations of novel 1-oxo-3,4-dihydro-1H-pyrrolo[2,1-c][1,4]oxazine-8-carboxylic acids and their benzoannelated analogues.Current Chemistry Letters, 14(1), 69-78.
Refrences
1 Yoshida W. Y., Lee K. K., Carroll A. R., and Scheuer P. J. (1992) A Complex Pyrrolo‐oxazinone and Its Iodo Derivative Isolated from a Tunicate. Helv. Chim. Acta, 75 (5) 1721-1725 (https://doi.org/10.1002/hlca.19920750525).
2 Fan H., Peng J., Hamann M. T., and Hu J.-F. (2008) Lamellarins and Related Pyrrole-Derived Alkaloids from Marine Organisms. Chem. Rev., 108 (1) 264-287 (https://doi.org/10.1021/cr078199m).
3 Burnham B. S., Gupton J. T., Krumpe K., Webb T., Shuford J., Bowers B., Warren A. E., Barnes C., and Hall I. H. (1998) Cytotoxicity of Substituted Alkyl-3,4-Bis(4-Methoxyphenyl)Pyrrole-2-Carboxylates in L1210 Lymphoid Leukemia Cells. Arch. Pharm., 331 (11) 337-341 (https://doi.org/10.1002/(SICI)1521-4184(199811)331:113.0.CO;2-R).
4 Gupton J. T., Burham B. S., Byrd B., Krumpe K., Stokes C., Shuford J., Winkle S., Webb T., Warren A., Barnes C., Henry J., and Hall I. (1999) The Cytotoxicity and Mode of Action of 2,3,4-Trisubstituted Pyrroles and Related Derivatives in Human Tmolt4 Leukemia Cells. Pharmazie, 54 (9) 691-697.
5 Boger D. L., Boyce C. W., Labroli M. A., Sehon C. A., and Jin, Q. (1999) Total Syntheses of Ningalin A, Lamellarin O, Lukianol A, and Permethyl Storniamide A Utilizing Heterocyclic Azadiene Diels−Alder Reactions. J. Am. Chem. Soc., 121 (1) 54-62 (https://doi.org/10.1021/ja982078+).
6 Manzanaro S., Salvá J., and De La Fuente J. Á. (2006) Phenolic Marine Natural Products as Aldose Reductase Inhibitors. J. Nat. Prod., 69 (10) 1485-1487 (https://doi.org/10.1021/np0503698).
7 Bullington J. L., Fan X., Jackson P. F., and Zhang Y.-M. (2004) 3,4-Disubstituted pyrroles and their for use in treating inflammatory diseases. WO Patent 0,290,40.
8 Maggiolini M., Santolla M. F., Avino S., Aiello F., Rosano C., Garofalo A., and Grande F. (2015) Identification of Two Benzopyrroloxazines Acting as Selective GPER Antagonists in Breast Cancer Cells and Cancer-Associated Fibroblasts. Future Med. Chem., 7 (4) 437-448 (https://doi.org/10.4155/fmc.15.3).
9 Jirkovsky I., and Humber L. G. (1977) Pyrrolobenzoxazines, Pyrrolobenzothiazines and Process Therefor. US Patent 4,035,495.
10 Kundu T., Bhattacharjee B., Hazra S., Ghosh A. K., Bandyopadhyay D., and Pramanik A. (2019) Synthesis and Biological Assessment of Pyrrolobenzoxazine Scaffold as a Potent Antioxidant. J. Med. Chem., 62 (13) 6315-6329 (https://doi.org/10.1021/acs.jmedchem.9b00717).
11 Yao Y., Wang X., and Liang G. (2017) Total Syntheses of (+)-Agelastatin A and (+)-Agelastatin B through Cationic Cyclizations. Tetrahedron, 73 (31) 4538-4544 (https://doi.org/10.1016/j.tet.2017.06.009).
12 Belanger P. C., Atkinson J. G., Rooney C. S., Britcher S. F., and Remy D. C. (1983) Synthesis of 2-, 3- and 9-Substituted 11-Oxo-11H-Pyrrolo[2,1-b][3]Benzazepines. J. Org. Chem., 48 (19) 3234-3241 (https://doi.org/10.1021/jo00167a016).
13 Irwin W. J., and Wheeler D. L. (1972) The Reaction of Methyl Pyrrole-2-Carboxylate with Epoxides. Tetrahedron, 28 (4) 1113-1121 (https://doi.org/10.1016/0040-4020(72)80171-6).
14 Cooper G., Irwin W. J., and Wheeler D. L. (1971) I-Vinylpyrroles. Tetrahedron Lett., 12 (45) 4321-4324 (https://doi.org/10.1016/S0040-4039(01)97430-1).
15 Zimmerman W. (1994) Herbicidal Sulfonylureas. US Patent 5,356,862.
16 Agami C., Dechoux L., Hamon, L., and Hebbe S. (2003) Synthesis of Polysubstituted Pyrroles: Further Advances in the Reactivity of δ-Dienamino Esters. Synthesis, 2003 (06) 0859-0862 (https://doi.org/10.1055/s-2003-38690).
17 Mitchell J. P., Pitt G., Draffan A. G., Mayes P. A., Andrau L., and Anderson K. (2011) Compounds for treating respiratory syncytial virus infections. WO Patent 0,948,23.
18 Kuzmich D., Disalvo D., and Razavi H. (2008) Glucocorticoid mimetics, methods of making them, pharmaceutical compositions, and uses thereof. WO Patent 0,705,07.
19 Cooper G., and Irwin W. J. (1973) Mechanism of the Reaction between Pyrrole Esters and Styrene Oxide. J. Chem. Soc. Perkin 1, 911-914 (https://doi.org/10.1039/p19730000911).
20 Martens J., Lübben S., Behrens I., and Janke R. (1989) Einfache Synthese Neuer Anellierter Pyrrole. Synthesis, 1989 (12) 965-967 (https://doi.org/10.1055/s-1989-27450).
21 Mukherjee S., Sivappa R., Yousufuddin M., and Lovely C. J. (2010) Asymmetric Total Synthesis of Ent -Cyclooroidin. Org. Lett., 12 (21) 4940-4943 (https://doi.org/10.1021/ol1020916).
22 Bhandari M. R., Yousufuddin M., and Lovely C. J. (2011) Diversity-Oriented Approach to Pyrrole-Imidazole Alkaloid Frameworks. Org. Lett., 13 (6) 1382-1385 (https://doi.org/10.1021/ol200067e).
23 Taskaya S., Menges N., and Balci M. (2015) Gold-Catalyzed Formation of Pyrrolo- and Indolo-Oxazin-1-One Derivatives: The Key Structure of Some Marine Natural Products. Beilstein J. Org. Chem., 11 897-905 (https://doi.org/10.3762/bjoc.11.101).
24 Hammoud S., Anselmi E., Cherry K., Kizirian J.-C., and Thibonnet J. (2018) Synthesis and Reactivity of Oxazinoindolones via Regioselective 6-exo-dig Iodolactonization Reaction. Eur. J. Org. Chem., 2018 (45) 6314-6327 (https://doi.org/10.1002/ejoc.201801167).
25 Xiao F., Liao P., Lu X., Wang J., Dong X.-Q., and Wang C.-J. (2022) Iridium-Catalyzed Asymmetric Cascade Allylation/Lactonization of Indole Esters: Access to Chiral Tricyclic Oxazinoindolones. Org. Lett., 24 (47) 8592-8597 (https://doi.org/10.1021/acs.orglett.2c03100).
26 Grande F., Occhiuzzi M. A., Ioele G., Ragno G., and Garofalo A. (2018) Benzopyrroloxazines Containing a Bridgehead Nitrogen Atom as Promising Scaffolds for the Achievement of Biologically Active Agents. Eur. J. Med. Chem., 151 121-144 (https://doi.org/10.1016/j.ejmech.2018.03.061).
27 Sanaeishoar T., Adibi-Sedeh S., and Karimian S. (2014) Novel Approach for the Synthesis of Pyrrolo[2,1-c][1,4]Benzoxazines and Pyrrolo[1,2-a]Quinoxalines. Comb. Chem. High Throughput Screen., 17 (2) 157-161 (https://doi.org/10.2174/1386207316666131227150430).
28 Moradi L., Piltan M., and Rostami H. (2014) One-Pot Synthesis of Novel Pyrrolo-1,4-Benzoxazines via a Three-Component Reaction of 2-Amino Phenols, Acetylenic Esters and Nitrostyrene Derivatives. Chin. Chem. Lett., 25 (1) 123-126 (https://doi.org/10.1016/j.cclet.2013.10.009).
29 Naganaboina R. T., Nayak A., and Peddinti R. K. (2014) Trifluoroacetic Acid-Promoted Michael Addition–Cyclization Reactions of Vinylogous Carbamates. Org. Biomol. Chem., 12 (21) 3366-3370 (https://doi.org/10.1039/C4OB00437J).
30 Piltan M., Moradi L., Zarei S. A., and Rostami H. (2014) One-Pot Multicomponent Synthesis of Novel Tricyclic Pyrrolo[2,1-c][1,4]Benzoxazines. Chin. Chem. Lett., 25 (2) 234-236 (https://doi.org/10.1016/j.cclet.2013.11.017).
31 Bisht S., and Peddinti R. K. (2017) FeCl3-Mediated Domino Reaction of Benzoxazinones with Aroylmethylidene Malonates: Synthesis to Functionalized Pyrrolobenzoxazines. J. Org. Chem., 82 (24) 13617-13625 (https://doi.org/10.1021/acs.joc.7b02207).
32 Dahiya P., Yadav A., Budhwan R., and Peddinti R. K. (2023) Construction of Polyheterocyclic Compounds by Lewis Acid Mediated Intramolecular [3+2] Cycloaddition Reaction. Eur. J. Org. Chem., 26 (31) e202300251 (https://doi.org/10.1002/ejoc.202300251).
33 Sharma N., and Peddinti R. K. (2017) Iodine-Catalyzed Regioselective Synthesis of Multisubstiuted Pyrrole Polyheterocycles Free from Rotamers and Keto–Enol Tautomers. J. Org. Chem., 82 (18) 9360-9366 (https://doi.org/10.1021/acs.joc.7b01538).
34 Selvendran S., and Rajendran S. (2021) Lewis Acid-Promoted Synthesis of Highly Substituted Pyrrole-Fused Benzoxazinones and Quinoxalinones. Synth. Commun., 51 (3) 437-445 (https://doi.org/10.1080/00397911.2020.1832528).
35 Palmieri A., Gabrielli S., Parlapiano M., and Ballini R. (2015) One-Pot Synthesis of Alkyl Pyrrole-2-Carboxylates Starting from β-Nitroacrylates and Primary Amines. RSC Adv., 5 (6) 4210-4213 (https://doi.org/10.1039/C4RA13094D).
36 Crump D. R., Franck R. W., Gruska R., Ozorio A. A., Pagnotta M., Siuta G. J., and White J. G. (1977) Approaches to the Mitomycins. A Meta Photo-Fries Reaction. J. Org. Chem., 42 (1) 105-108 (https://doi.org/10.1021/jo00421a020).
37 Artico M., Porretta G. C., and De Martino G. (1971) The Synthesis of 4H-Pyrrolo[2,1-c][1,4]Benzoxazine. J. Heterocycl. Chem., 8 (2) 283-287 (https://doi.org/10.1002/jhet.5570080219).
38 Cheeseman G. W. H., Rafiq M., Roy P. D., Turner C. J., and Boyd G. V. (1971) Synthesis and Reactions of Pyrrolo[2,1-c][1,2,4]Benzotriazine and 4-Oxo-4H-Pyrrolo[2,1-c][1,4]Benzoxazine. J. Chem. Soc. C Org., 2018-2022 (https://doi.org/10.1039/j39710002018).
39 Vaillard V. A., Rossi R. A., and Martín S. E. (2011) Synthesis of Pyrrole and Indole Quinoxalinone and Oxazinone Derivatives by Intramolecular Copper-Catalyzed Reactions. Org. Biomol. Chem., 9 (13) 4927-4935 (https://doi.org/10.1039/c1ob05269a).
40 Mullen G. B., Georgiev V. St., and Acker C. G. (1986) Synthesis of novel methyl (2-oxo-3-morpholinylodene)acetates. Heterocycles, 24 (5) 1285-1286 (DOI: 10.3987/R-1986-05-1285).
41 Harwood L. M., Tucker T. T., Angell R., and Finch H. (1996) A novel synthetic route to morpholin-2,3-diones from 2-aminoalcohols. Tetrahedron Lett., 37 (24) 4217-4220 (https://doi.org/10.1016/0040-4039(96)00800-3).
42 Kawahara N., Nakajima T., Itoh T., Takayanagi H., and Ogura H. (1984) Structural elucidation of the reaction products of benzoxazole derivatives with dimethyl acetylenedicarboxylate. V. Chem. Pharm. Bull., 32 (3) 1163-1169 (https://doi.org/10.1248/cpb.32.1163).
43 Choudhary G., and Peddinti R. K. (2011) Introduction of a Clean and Promising Protocol for the Synthesis of β-Amino-Acrylates and 1,4-Benzoheterocycles: An Emerging Innovation. Green Chem., 13 (11) 3290-3299 (https://doi.org/10.1039/C1GC15701A).
44 Danswan G. W., Hairsine P. W., Rowlands D. A., Taylor J. B., and Westwood R. (1982) Synthesis and Reactions of Some Novel Imidazobenzoxazines and Related Systems. J. Chem. Soc. Perkin 1, 1049 (https://doi.org/10.1039/p19820001049).
45 Gupta A. K., Chakrasali R. T., Ila H., and Junjappa H. (1989) Reaction of Polarized Ketene S,N-Acetals with Bromoacetaldehyde Diethyl Acetal: Synthesis of 1-Substituted 3-Acyl- and 3-Nitro-2-Methylthiopyrroles and 1,2-Annulated 3-Acylpyrroles. Synthesis, 1989 (2) 141-142 (https://doi.org/10.1055/s-1989-27179).
46 Barun O., Chakrabarti S., Ila H., and Junjappa H. (2001) Ring Annulation with Tetrahydroisoquinoline-Derived Enaminones: Highly Convergent Routes to Functionalized Pyrrolo[2,1-a]- and Indolo[2,1-a]Isoquinolines. J. Org. Chem., 66 (12) 4457-4461 (https://doi.org/10.1021/jo010273s).
47 Janciene R., Stumbreviciute Z., Podeniene D., Puodziunaite B. D., Black S., and Husbands S. M. (2006) Synthesis of Novel 1‐substituted [1,3]Thiazolo[3,2‐a]‐[1,5]Benzodiazepine Derivatives from 1,5‐benzodiazepine‐2‐thiones and Α‐halogen Carbonyl Compounds. J. Heterocycl. Chem., 43 (4) 979-984 (https://doi.org/10.1002/jhet.5570430424).
48 Litvinchuk M. B., Bentya A. V., Grozav A. M., Yakovychuk N. D., Palamar A. O., Saliyeva L. M., Slyvka N. Yu., Shishkina S. V., and Vovk M. V. (2023) Synthesis, Antimicrobial and Antioxidant Activity of Novel 1-Oxo-1,2,3,4-Tetrahydropyrrolo[1,2-a]Pyrazine-8-Carboxylic Acids, Esters, and Amides Thereof. Monatshefte Für Chem. - Chem. Mon., 154 (10) 1145-1159 (https://doi.org/10.1007/s00706-023-03118-8).
49 Ghosh A. K., Sarkar A., and Brindisi M. (2018) The Curtius Rearrangement: Mechanistic Insight and Recent Applications in Natural Product Syntheses. Org. Biomol. Chem., 16 (12) 2006-2027 (https://doi.org/10.1039/C8OB00138C).
50 De Figueiredo R. M., Suppo J.-S., and Campagne J.-M. (2016) Nonclassical Routes for Amide Bond Formation. Chem. Rev., 116 (19) 12029-12122 (https://doi.org/10.1021/acs.chemrev.6b00237).
51 Massolo E., Pirola M., and Benaglia M. (2020) Amide Bond Formation Strategies: Latest Advances on a Dateless Transformation. Eur. J. Org. Chem., 2020 (30) 4641-4651 (https://doi.org/10.1002/ejoc.202000080).
52 Santos A. S., Silva A. M. S., and Marques M. M. B. (2020) Sustainable Amidation Reactions – Recent Advances. Eur. J. Org. Chem., 2020 (17) 2501-2516 (https://doi.org/10.1002/ejoc.202000106).
53 Lundberg H., Tinnis F., Selander N., and Adolfsson H. (2014) Catalytic Amide Formation from Non-Activated Carboxylic Acids and Amines. Chem Soc Rev, 43 (8) 2714-2742 (https://doi.org/10.1039/C3CS60345H).
54 Carpino L. A. (1993) 1-Hydroxy-7-Azabenzotriazole. An Efficient Peptide Coupling Additive. J. Am. Chem. Soc., 115 (10) 4397-4398 (https://doi.org/10.1021/ja00063a082).
55 Bhatt V., Samant S. D., and Pednekar S. (2017) Efficient One-Pot HATU Mediated Coupling of Dicarboxylic Acid and Amines for the Synthesis of Diamide at Ambient Temperature. Lett. Org. Chem., 14 (10) 764-768 (https://doi.org/10.2174/1570178614666170710095437).
56 Sheldrick G. M. (2008) A Short History of SHELX. Acta Crystallogr. A, 64 (1) 112-122 (https://doi.org/10.1107/S0108767307043930).