How to cite this paper
Karangiya, K., Dhaduk, M & Upadhya, J. (2025). Design, synthesis, characterization and antimicrobial screening of newly synthesized indazoles of vanillin analogue.Current Chemistry Letters, 14(1), 51-58.
Refrences
1. Prakash C. and Singh R., (2024) Synthesis of fluorinated six-membered nitrogen heterocycles using microwave irradiation. Chem. Heterocycl. Comp., 60, 216-229. (https://doi.org/10.1007/s10593-024-03323-1).
2. Bastrakov M. A. and Ivanova V. V., (2024) Synthesis and reactivity of [1,2,5] thiadiazolo[3,4-b]pyridines and [1,2,5]selenadiazolo[3,4-b]pyridines. Chem. Heterocycl. Comp., 60, 38–40. (https://doi.org/10.1007/s10593-024-03290-7).
3. Arutiunov, N. A., Zatsepilina, A. M. and Aksenova, A. A., (2024) A novel method for the synthesis of 2-arylquinolin-4(1H)-ones. Chem. Heterocycl. Comp., 60 275–279. (https://doi.org/10.1007/s10593-024-03333-z).
4. Ren D., Kuang G., & Li X. (2018) 1,3-Dipolar cycloaddition of diphenylnitrilimine and 5-arylmethylidene-1-phenyl-1,5,6,7-tetrahydro-4H-indazol-4-ones to afford novel spiro[indazole-5,3′-pyrazole] derivatives. Chem. Heterocycl. Comp., 54, 1117–1120. (https://doi.org/10.1007/s10593-019-02401-z).
5. Ladani M. J., Tala S. D., Akbari J. D., Dhaduk M. F., & Joshi H. S., (2009) Synthesis and biological study of oxopyrimidines and thiopyrimidines of 2-(2,4-dichlorophenyl) imidazo [1,2-a] pyridine 3- carbaldehyde. Jour. Of Indian Chemical Soc., 86, 104-108.
6. Rokad S. V., Tala S. D., Akabari J. D., Dhaduk M. F., & Joshi H. S., (2009) Synthesis, antitubercular and antimicrobial activity of some newN-aryl-1,4-dihydropyridines containing furan nucleas. Jour. Of Indian Chemical Soc., 86(2), 186-191.
7. Akbari J. D., Tala S. D., Dhaduk M. F., Joshi H. S., Mehta K. B., & Pathak S. J., (2008) Synthesis of some new pyrazolo[3,4-d] pyrimidines and thiazolo [4,5-d] pyrimidines and evaluation of their antimicrobial activities. Phosphorus, Sulfur, and Silicon, (183), 1471–1477. (DOI: 10.1080/10426500701681581).
8. Gao M. C., & Xu B. (2016) Transition metal-involving synthesis and utilization of N-containing heterocycles: Exploration of nitrogen sources. Chem. Rec., 16, 1701–1714.
9. Vidyacharan S., Murugan A., & Sharada D. S. (2016) C(sp2)-H Functionalization of 2H-indazoles at C3-position via palladium(II)-catalyzed isocyanide insertion strategy leading to diverse heterocycles. J. Org. Chem., 81, 2837–2848.
10. Shinde A. H., Vidyacharan S., & Sharada D. S. (2016) BF3·OEt2 mediated metal-free one-pot sequential multiple annulation cascade (SMAC) synthesis of complex and diverse tetrahydroisoquinoline fused hybrid molecules. Org. Biomol. Chem., 14, 3207–3211.
11. Behrouz S. (2017) Highly efficient one-pot three component synthesis of 2H-indazoles by consecutive condensation, C-N and N-N bond formations using Cu/Aminoclay/reduced grapheme oxide nanohybrid. J. Heterocyclic. Chem., 54, 1863–1871.
12. Jayanthi M., & Rajakumar P. (2017) Synthesis, cell viability, and flow cytometric fluorescence pulse width analysis of dendrimers with indazoles surface unit. J. Heterocyclic. Chem., 54, 3042–3050.
13. Lavrard H., & Popowycz F. (2018) Regioselective late-stage C-3 functionalization of pyrazolo-[3,4-b] pyridines. Synth., 50, 998–1006.
14. Bogonda G., Kim H.Y., & Oh K. (2018) Direct acyl radical addition to 2H-indazoles using Ag-catalyzed decarboxylative cross-coupling of α-keto acids. Org. Lett., 20, 2711–2715.
15. Jones P., Wilcoxen K., Rowley M., & Toniatti C., (2015) Niraparib: A poly(ADP-ribose) polymerase (PARP) inhibitor for the treatment of tumors with defective homologous recombination. J. Med. Chem., 58, 3302−3314.
16. Jin C. L., Fang Y. L., Li J. H., Shiow L. P., Jih H. G., & Che M. T. (2002) 1-Benzyl – 3 - (5’-hydroxymethyl – 2’-furyl) indazole (YC-1) derivatives as novel inhibitors against sodium nitroprusside - induced apoptosis. J. Med. Chem., 45(23), 4947–49.
17. Steffan, R. J., Matelan, E., Ashwell, M. A., Moore, W. J., Solvibile, W. R., Trybulski, E., ... & Harnish, D. C. (2004). Synthesis and activity of substituted 4-(indazol-3-yl) phenols as pathway-selective estrogen receptor ligands useful in the treatment of rheumatoid arthritis. J. Med. Chem., 47(26), 6435–38.
18. Giannouli, V., Kostakis, I. K., Pouli, N., Marakos, P., Kousidou, O. C., Tzanakakis, G. N., & Karamanos, N. K. (2007). Design, synthesis, and evaluation of the antiproliferative activity of a series of novel fused xanthenone aminoderivatives in human breast cancer cells. J. Med. Chem., 50(7), 1716–19.
19. Elsayed, N. M., Serya, R. A., Tolba, M. F., Ahmed, M., Barakat, K., Abou El Ella, D. A., & Abouzid, K. A. (2019) Design, synthesis, biological evaluation and dynamics simulation of indazole derivatives with antiangiogenic and antiproliferative anticancer activity. Bioorg. Chem., 82, 340–359.
20. Jesse A. M., Anura P. D., Paul W. Z., Marsha A. M., & Najam A. S. (2006) Oral cholesteryl ester transfer protein (CETP) inhibitors: a potential new approach for treating coronary artery disease. J. Med. Chem., 49(1), 318–28.
21. Vincent L., Lee G. E., Lin J., Herman S. H., & Thomas B. (2001) Facile Preparation of 3-(1-Piperazinyl)-1H-indazoles. Lee Org. Proc. Res. Dev., 5(2), 179–83.
22. Thomas J. S., Leroy J. H., Charles S. D., & Guy S. L., (2003) Synthesis and hypotensive activity of a series of 2-substituted 5,6-dimethoxyindazoles. J. Pharm. Sci., 67(7), 1022–24.
23. Kym, P. R., Iyengar, R., Souers, A. J., Lynch, J. K., Judd, A. S., Gao, J., ... & Collins, C. A. (2005) Discovery and characterization of aminopiperidinecoumarin melanin concentrating hormone receptor 1 antagonists. J. Med. Chem., 48(5), 1318–21.
24. Jian X. D., Xiaohong C., Fanying M., Leslie L., Charles H., & Mark M., (2007) Potent antitubulin tumour cell cytotoxins based on 3-aroyl indazoles, J. Med. Chem., 50(5), 1001–06.
25. Wyrick S. D., Voorstad P. J., Cocolas G., & Hall I. H. (1984) Hypolipidemic activity of phthalimide derivatives. 7. Structure-activity studies of indazolone analogues. J. Med. Chem., 27(6), 68–72.
26. Arán, V. J., Ochoa, C., Boiani, L., Buccino, P., Cerecetto, H., Gerpe, A., ... & Castellano, E. E. (2005) Synthesis and biological properties of new 5-nitroindazole derivatives. Bioorg. Med. Chem., 13(9), 3197–3207.
27. El-Hawash, S. A., Badawey, E. S. A., & El-Ashmawey, I. M. (2006) Nonsteroidal antiinflammatory agents—part 2 antiinflammatory, analgesic and antipyretic activity of some substituted 3-pyrazolin-5-ones and 1, 2, 4, 5, 6, 7-3H-hexahydroindazol-3-ones. Eur. J. Med. Chem., 33(5), 349–61.
28. Soad A. M., Hawash E. L., Sayed E. L., Badawey A. M., & Ibrahim M. (2006) El–Ashmawey Nonsteroidal anti-inflammatory agents - part 2 anti-inflammatory, analgesic and antipyretic activity of some substituted 3-pyrazolin-5-ones and 1, 2, 4, 5, 6, 7- 3H - hexahydroindazol-3-ones., Eur. J. Med. Chem., 41(2), 155–65.
29. Vyas D. H., Tala S. D., Akbari J. D., Dhaduk M. F., & Joshi H. S. (2009) Synthesis, antimicrobial and antitubercular activity of some cyclohexenone and indazole derivatives. Indian Journal of Chemistry, 48B, 1405-1410.
30. Wei, W., Liu, Z., Wu, X., Gan, C., Su, X., Liu, H., ... & Ye, T. (2021) Synthesis and biological evaluation of indazole derivatives as anti-cancer agents. RSC Adv., 11, 5675-15687.
31. Angelova, V. T., Pencheva, T., Vassilev, N., Simeonova, R., Momekov, G., & Valcheva, V. (2019) New indole and indazole derivatives as potential antimycobacterial agents. Med. Chem. Res., 28(4), 485–497.