How to cite this paper
Oulhaj, O., Oubenmoussa, L., Essassaoui, H., Bouha, M & Mbarki, M. (2025). Structural, electronic, and spectroscopic properties of oxadiazole isomers in the light of DFT computational stud.Current Chemistry Letters, 14(1), 31-40.
Refrences
1. Vitaku E., Smith D. T., and Njardarson J. T. (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: miniperspective. J. Med. Chem., 57(24), 10257-10274. doi.org/10.1021/jm501100b
2. Pitasse-Santos P., Sueth-Santiago V., and Lima M. E. (2018) 1, 2, 4-and 1, 3, 4-Oxadiazoles as Scaffolds in the Development of Antiparasitic Agents. J. Brazil. Chem. Society., 29(3), 435-456. doi.org/10.21577/0103-5053.20170208
3. Midoune A., and Messaoudi A. (2020) Etude computationnelle DFT/TD-DFT de la molécule tétrathiafulvalène-1, 3-benzothiazole pour mettre en évidence ses propriétés structurelles, électroniques, vibrationnelles et optiques non linéaires. Comp. Rend. Chimie., 23(2), 143-158.
4. Becke A. D. (1992) Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Physics., 96(3), 2155-2160. doi.org/10.1063/1.462066
5. Hehre W. J., and Stewart R. F., and Pople J. A. (1969) Self‐consistent molecular‐orbital methods. I. Use of Gaussian expansions of Slater‐type atomic orbitals. J. Chem. Physics., 51(6), 2657-2664. doi.org/10.1063/1.1672392
6. Virk N., Iqbal J., Aziz-ur-Rehman A., Abbasi M., Siddiqui S., Rasool S., Nisa M. N., Abid M. A., Hira K., Zafar F.,Javaid, H. (2023). In vitro biological assessment of 1, 3, 4-oxadiazole sandwiched by azinane and acetamides supported by molecular docking and BSA binding studies. Curr. Chem. Letters., 12(2), 353-368. doi.org/10.5267/j.ccl.2022.12.004
7. El Hassani I. A., Brandán, S. A., Mortada, S., Arshad, S., Romano, E., Ramli, Y., Mague J. T., and Karrouchi K. (2024). 2-(allylthio)-5-(5-phenyl-1H-pyrazol-3-yl)-1, 3, 4-oxadiazole: Synthesis, single crystal XRD, spectroscopic characterization, antidiabetic activity, DFT and ADMET studies. J. Mole. Structure., 1295, 136620. doi.org/10.1016/j.molstruc.2023.136620
8. Oliveira M. S., Santos A. B., Ferraz T. V., Moura G. L., and Falcão, E. H. (2023). Non-symmetrical 1, 3, 4-oxadiazole derivatives: synthesis, characterization, and computational study of their optical properties. Chem. Physics. Impa., 6, 100162. doi.org/10.1016/j.chphi.2023.100162
9. Waghchaure R. H., and Adole V. A. (2024). DFT Computational Studies, Spectroscopic (UV–Vis, IR, NMR), In Silico Molecular Docking and ADME Study of 3-(3-Methylpyridin-2-yl)-5-phenyl-1, 2, 4-oxadiazole. J. Mole. Structure., 1296, 136724. doi.org/10.1016/j.molstruc.2023.136724
10. Govindarajan M., Karabacak M., Udayakumar V., and Periandy S. (2012) FT-IR, FT-Raman and UV spectral investigation: Computed frequency estimation analysis and electronic structure calculations on chlorobenzene using HF and DFT. Spectrochimica Acta Part A: Mol. Biom. Spectroscopy., 85(1), 251-260. doi.org/10.1016/j.saa.2011.10.002
11. Gupta R. R., Kumar M., and Gupta V. (2013). Heterocyclic Chemistry: Volume II: Five-Membered Heterocycles. Springer Science & Business Media. doi.org/10.1007/978-3-662-07757-3
12. Katritzky A., Ramsden C. A., Joule J., and Zhdankin V. (2010) Handbook of heterocyclic chemistry. 3rd Edition - August 24, Oxford: Elsevier,
13. Katritzky A. R., Ramsden C. A., Scriven E. F., and Taylor R. J. (2008) Comprehensive Heterocyclic Chemistry III. Vol. 6, Other Fivemembered Rings with Three or more Heteroatoms, and their Fused Carbocyclic Derivatives. Amsterdam: Elsevier., 1-13718. doi.org/10.1016/C2009-1-28335-3
14. Naik L., Khazi I. A. M., and Malimath G. H. (2020) Electronic excitation energy transfer studies in binary mixtures of novel optoelectronically active 1, 3, 4-oxadiazoles and coumarin derivatives. Chem. Phys. Letters., 749, 137453. doi.org/10.1016/j.cplett.2020.137453
15. Faeez A., and Al-Saidi S. F. (2017) A Theoretical Study on the Vibrational and UV/VIS Spectra for the some 1, 3, 4-oxadiazole Derivatives by Using DFT Approach. Research. J. Pharm. Biolo. Chem. Sciences., 8(1), 299-309.
16. Pitasse-Santos P., Sueth-Santiago V., and Lima M. E. (2018) 1, 2, 4-and 1, 3, 4-Oxadiazoles as Scaffolds in the Development of Antiparasitic Agents. J. Brazilian. Chem. Society., 29(3), 435-456. doi.org/10.21577/0103-5053.20170208
17. Luczynski M., and Kudelko A. (2022) Agnieszka. Synthesis and Biological Activity of 1, 3, 4-Oxadiazoles Used in Medicine and Agriculture. Applied Sciences., 12(8), 3756. doi.org/10.3390/app12083756
18. Nadir A., and Yahi C. (2021) Synthèse des nouvelles molécules à base de 1, 3, 4 Oxadiazole, évaluation de leurs activités biologiques. Diss. Universite Mohamed Boudiaf-M’sila.
19. Salassa G., and Terenzi A. (2019) Metal complexes of oxadiazole ligands: An overview. Inter. J. Mole. Scien., 20(14), 3483. doi.org/10.3390/ijms20143483
20. Glomb T., Szymankiewicz K., and Świątek, P. (2018) Anti-cancer activity of derivatives of 1, 3, 4-oxadiazole. Molecules., 23(12), 3361. doi.org/10.3390/molecules23123361
21. Hegelund F., Larsen R. W., Aitken R. A., Aitken K. M., and Palmer M. H. (2007) Aitken. High-resolution infrared and theoretical study of four fundamental bands of gaseous 1, 3, 4-oxadiazole between 800 and 1600 cm-1. J. Mole. Spectroscopy., 246(2), 198-212. doi.org/10.1016/j.jms.2007.09.011
22. El-Azhary A. A. (1996) Vibrational analysis of the spectra of 1, 3, 4-oxadiazole, 1, 3, 4-thiadiazole, 1, 2, 5-oxadiazole and 1, 2, 5-thiadiazole: comparison between DFT, MP2 and HF force fields. Spect. Acta Part A: Mole. Biom. Spect., 52(1), 33-44. doi.org/10.1016/0584-8539(95)01535-3
23. Kakitani T., and Kakitani H. (1977) Application of self-consistent HMO theory to heteroconjugated molecules. Theoretica. Chimica. Acta., 46, 259-275. doi.org/10.1007/BF00554512
2. Pitasse-Santos P., Sueth-Santiago V., and Lima M. E. (2018) 1, 2, 4-and 1, 3, 4-Oxadiazoles as Scaffolds in the Development of Antiparasitic Agents. J. Brazil. Chem. Society., 29(3), 435-456. doi.org/10.21577/0103-5053.20170208
3. Midoune A., and Messaoudi A. (2020) Etude computationnelle DFT/TD-DFT de la molécule tétrathiafulvalène-1, 3-benzothiazole pour mettre en évidence ses propriétés structurelles, électroniques, vibrationnelles et optiques non linéaires. Comp. Rend. Chimie., 23(2), 143-158.
4. Becke A. D. (1992) Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Physics., 96(3), 2155-2160. doi.org/10.1063/1.462066
5. Hehre W. J., and Stewart R. F., and Pople J. A. (1969) Self‐consistent molecular‐orbital methods. I. Use of Gaussian expansions of Slater‐type atomic orbitals. J. Chem. Physics., 51(6), 2657-2664. doi.org/10.1063/1.1672392
6. Virk N., Iqbal J., Aziz-ur-Rehman A., Abbasi M., Siddiqui S., Rasool S., Nisa M. N., Abid M. A., Hira K., Zafar F.,Javaid, H. (2023). In vitro biological assessment of 1, 3, 4-oxadiazole sandwiched by azinane and acetamides supported by molecular docking and BSA binding studies. Curr. Chem. Letters., 12(2), 353-368. doi.org/10.5267/j.ccl.2022.12.004
7. El Hassani I. A., Brandán, S. A., Mortada, S., Arshad, S., Romano, E., Ramli, Y., Mague J. T., and Karrouchi K. (2024). 2-(allylthio)-5-(5-phenyl-1H-pyrazol-3-yl)-1, 3, 4-oxadiazole: Synthesis, single crystal XRD, spectroscopic characterization, antidiabetic activity, DFT and ADMET studies. J. Mole. Structure., 1295, 136620. doi.org/10.1016/j.molstruc.2023.136620
8. Oliveira M. S., Santos A. B., Ferraz T. V., Moura G. L., and Falcão, E. H. (2023). Non-symmetrical 1, 3, 4-oxadiazole derivatives: synthesis, characterization, and computational study of their optical properties. Chem. Physics. Impa., 6, 100162. doi.org/10.1016/j.chphi.2023.100162
9. Waghchaure R. H., and Adole V. A. (2024). DFT Computational Studies, Spectroscopic (UV–Vis, IR, NMR), In Silico Molecular Docking and ADME Study of 3-(3-Methylpyridin-2-yl)-5-phenyl-1, 2, 4-oxadiazole. J. Mole. Structure., 1296, 136724. doi.org/10.1016/j.molstruc.2023.136724
10. Govindarajan M., Karabacak M., Udayakumar V., and Periandy S. (2012) FT-IR, FT-Raman and UV spectral investigation: Computed frequency estimation analysis and electronic structure calculations on chlorobenzene using HF and DFT. Spectrochimica Acta Part A: Mol. Biom. Spectroscopy., 85(1), 251-260. doi.org/10.1016/j.saa.2011.10.002
11. Gupta R. R., Kumar M., and Gupta V. (2013). Heterocyclic Chemistry: Volume II: Five-Membered Heterocycles. Springer Science & Business Media. doi.org/10.1007/978-3-662-07757-3
12. Katritzky A., Ramsden C. A., Joule J., and Zhdankin V. (2010) Handbook of heterocyclic chemistry. 3rd Edition - August 24, Oxford: Elsevier,
13. Katritzky A. R., Ramsden C. A., Scriven E. F., and Taylor R. J. (2008) Comprehensive Heterocyclic Chemistry III. Vol. 6, Other Fivemembered Rings with Three or more Heteroatoms, and their Fused Carbocyclic Derivatives. Amsterdam: Elsevier., 1-13718. doi.org/10.1016/C2009-1-28335-3
14. Naik L., Khazi I. A. M., and Malimath G. H. (2020) Electronic excitation energy transfer studies in binary mixtures of novel optoelectronically active 1, 3, 4-oxadiazoles and coumarin derivatives. Chem. Phys. Letters., 749, 137453. doi.org/10.1016/j.cplett.2020.137453
15. Faeez A., and Al-Saidi S. F. (2017) A Theoretical Study on the Vibrational and UV/VIS Spectra for the some 1, 3, 4-oxadiazole Derivatives by Using DFT Approach. Research. J. Pharm. Biolo. Chem. Sciences., 8(1), 299-309.
16. Pitasse-Santos P., Sueth-Santiago V., and Lima M. E. (2018) 1, 2, 4-and 1, 3, 4-Oxadiazoles as Scaffolds in the Development of Antiparasitic Agents. J. Brazilian. Chem. Society., 29(3), 435-456. doi.org/10.21577/0103-5053.20170208
17. Luczynski M., and Kudelko A. (2022) Agnieszka. Synthesis and Biological Activity of 1, 3, 4-Oxadiazoles Used in Medicine and Agriculture. Applied Sciences., 12(8), 3756. doi.org/10.3390/app12083756
18. Nadir A., and Yahi C. (2021) Synthèse des nouvelles molécules à base de 1, 3, 4 Oxadiazole, évaluation de leurs activités biologiques. Diss. Universite Mohamed Boudiaf-M’sila.
19. Salassa G., and Terenzi A. (2019) Metal complexes of oxadiazole ligands: An overview. Inter. J. Mole. Scien., 20(14), 3483. doi.org/10.3390/ijms20143483
20. Glomb T., Szymankiewicz K., and Świątek, P. (2018) Anti-cancer activity of derivatives of 1, 3, 4-oxadiazole. Molecules., 23(12), 3361. doi.org/10.3390/molecules23123361
21. Hegelund F., Larsen R. W., Aitken R. A., Aitken K. M., and Palmer M. H. (2007) Aitken. High-resolution infrared and theoretical study of four fundamental bands of gaseous 1, 3, 4-oxadiazole between 800 and 1600 cm-1. J. Mole. Spectroscopy., 246(2), 198-212. doi.org/10.1016/j.jms.2007.09.011
22. El-Azhary A. A. (1996) Vibrational analysis of the spectra of 1, 3, 4-oxadiazole, 1, 3, 4-thiadiazole, 1, 2, 5-oxadiazole and 1, 2, 5-thiadiazole: comparison between DFT, MP2 and HF force fields. Spect. Acta Part A: Mole. Biom. Spect., 52(1), 33-44. doi.org/10.1016/0584-8539(95)01535-3
23. Kakitani T., and Kakitani H. (1977) Application of self-consistent HMO theory to heteroconjugated molecules. Theoretica. Chimica. Acta., 46, 259-275. doi.org/10.1007/BF00554512