How to cite this paper
Tamta, A., Kumar, R., Gouri, V., Joshi, R., Chandra, B & Kandpal, N. (2024). Synthesis, characterization and biological activities of NiO-cellulose nanocomposite.Current Chemistry Letters, 13(3), 593-602.
Refrences
1. Ghazzy, A., Naik, R.R. and Shakya, A.K. (2023) Metal–Polymer Nanocomposites: A Promising Approach to Antibacterial Materials. Polymers, 15(9), 2167.
2. Jancar, J., Douglas, J.F., Starr, F.W., Kumar, S.K., Cassagnau, P., Lesser, A.J., Sternstein, S.S. and Buehler, M.J. (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer, 51(15), 3321-3343.
3. Faupel, F., Zaporojtchenko, V., Strunskus, T. and Elbahri, M. (2010) Metal‐polymer nanocomposites for functional applications. Advanced engineering materials, 12(12), 1177-1190.
4. Rashid, A.B., Hoque, M.E., Kabir, N., Rifat, F.F., Ishrak, H., Alqahtani, A. and Chowdhury, M.E. (2023) Synthesis, Properties, Applications, and Future Prospective of Cellulose Nanocrystals. Polymers, 15(20), 4070.
5. Gabrielli, V. and Frasconi, M. (2022) Cellulose-based functional materials for sensing. Chemosensors, 10(9), 352.
6. Bej, S., Sarma, H., Ghosh, M. and Banerjee, P. (2023) Metal-organic-frameworks/cellulose hybrids with their modern technological implementation towards water treatment. Environmental Pollution, 121278.
7. Karimzadeh, Z., Mahmoudpour, M., Rahimpour, E. and Jouyban, A. (2022) Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Advances in Colloid and Interface Science, 305, 102705.
8. Shi, C., Kang, F., Zhu, Y., Teng, M., Shi, J., Qi, H., Huang, Z., Si, C., Jiang, F. and Hu, J. (2023) Photoreforming lignocellulosic biomass for hydrogen production: Optimized design of photocatalyst and photocatalytic system. Chemical Engineering Journal, 452, 138980.
9. Aziz, T., Farid, A., Haq, F., Kiran, M., Ullah, A., Zhang, K., Li, C., Ghazanfar, S., Sun, H., Ullah, R. and Ali, A. (2022) A review on the modification of cellulose and its applications. Polymers, 14(15), 3206.
10. Barhoum, A., Rastogi, V.K., Mahur, B.K., Rastogi, A., Abdel-Haleem, F.M. and Samyn, P. (2022) Nanocelluloses as new generation materials: Natural resources, structure-related properties, engineering nanostructures, and technical challenges. Materials Today Chemistry, 26, 101247.
11. Pathak, J., Pandey, B., Singh, P., Kumar, R., Kaushik, S., Sahu, I.P., Thakur, T.K. and Kumar, A. (2023) Exploring the paradigm of phyto-nanofabricated metal oxide nanoparticles: recent advancements, applications, and challenges. Molecular Biotechnology, 1-21.
12. Joshi, N., Pandey, D.K., Mistry, B.G. and Singh, D.K. (2023) Metal Oxide Nanoparticles: Synthesis, Properties, Characterization, and Applications. In Nanomaterials: Advances and Applications, 103-144.
13. Khan, A., Vishvakarma, R., Sharma, P., Sharma, S. and Vimal, A. (2023) Green Synthesis of Metal-Oxide Nanoparticles from Fruits and Their Waste Materials for Diverse Applications. In Nanomaterials from Agricultural and Horticultural Products, 81-119.
14. Salem, S.S., Hammad, E.N., Mohamed, A.A. and El-Dougdoug, W. (2022) A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem, 13(1), 41.
15. Yadav, V.K., Khan, S.H., Malik, P., Thappa, A., Suriyaprabha, R., Ravi, R.K., Choudhary, N., Kalasariya, H. and Gnanamoorthy, G. (2020) Microbial synthesis of nanoparticles and their applications for wastewater treatment. Microbial Biotechnology: Basic Research and Applications, 147-187.
16. Oprea, M. and Panaitescu, D.M. (2020) Nanocellulose hybrids with metal oxides nanoparticles for biomedical applications. Molecules, 25(18), 4045.
17. Oun, A.A., Shankar, S. and Rhim, J.W. (2020) Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Critical reviews in food science and nutrition, 60(3), 435-460.
18. Oprea, M. and Panaitescu, D.M. (2020) Nanocellulose hybrids with metal oxides nanoparticles for biomedical applications. Molecules, 25(18), 4045.
19. Thomas, B., Raj, M.C., Joy, J., Moores, A., Drisko, G.L. and Sanchez, C. (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical reviews, 118(24), 11575-11625.
20. Abo‐zeid, Y. and Williams, G.R. (2020) The potential anti‐infective applications of metal oxide nanoparticles: A systematic review. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 12(2), 1592.
21. Kaur, H., Rauwel, P. and Rauwel, E. (2023) Antimicrobial nanoparticles: synthesis, mechanism of actions. In Antimicrobial activity of nanoparticles, 155-202.
22. Abdelhamid, H.N. and Mathew, A.P. (2022) Cellulose-based nanomaterials advance biomedicine: a review. International Journal of Molecular Sciences, 23(10), 5405.
23. Thoniyot, P., Tan, M.J., Karim, A.A., Young, D.J. and Loh, X.J. (2015) Nanoparticle–hydrogel composites: Concept, design, and applications of these promising, multi‐functional materials. Advanced Science, 2(1-2), 1400010.
24. Rol, F., Belgacem, M.N., Gandini, A. and Bras, J. (2019) Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science, 88, 241-264.
25. Zhao, D., Zhu, Y., Cheng, W., Chen, W., Wu, Y. and Yu, H. (2021) Cellulose‐based flexible functional materials for emerging intelligent electronics. Advanced materials, 33(28), 2000619.
26. Shen, Y. (2015) Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. Journal of Materials Chemistry A, 3(25), 13114-13188.
27. Ziegler, J.M., Andoni, I., Choi, E.J., Fang, L., Flores-Zuleta, H., Humphrey, N.J., Kim, D.H., Shin, J., Youn, H. and Penner, R.M. (2020) Sensors based upon nanowires, nanotubes, and nanoribbons: 2016–2020. Analytical Chemistry, 93(1), 124-166.
28. Joseph, B., Sagarika, V.K., Sabu, C., Kalarikkal, N. and Thomas, S. (2020) Cellulose nanocomposites: Fabrication and biomedical applications. Journal of Bioresources and Bioproducts, 5(4), 223-237.
29. Maksoud, M.A., Elgarahy, A.M., Farrell, C., Ala'a, H., Rooney, D.W. and Osman, A.I. (2020) Insight on water remediation application using magnetic nanomaterials and biosorbents. Coordination Chemistry Reviews, 403, 213096.
30. Zaidan, M. R., Noor Rain, A., Badrul, A. R., Adlin, A., Norazah, A., Zakiah, I. (2005) In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop biomed, 22(2), 165-170.
31. Tandon, S., Puri, M., Bharath, Y., Choudhury, U. M., Mohapatra, D. K., Muthuswami, R., Madhubala, R. (2023) In vitro screening of natural product-based compounds for leishmanicidal activity. Journal of Parasitic Diseases, 1-15.
32. Prasanna, P., Kumar, P., Mandal, S., Kumar, S., Payal, T., Sk, U. H., Mandal, D. (2021) Synthesis of 7, 8–dihydroxyflavone functionalized gold nanoparticles and its mechanism of action against Leishmania donovani.
33. Gong, J., Li, J., Xu, J., Xiang, Z. and Mo, L. (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC advances, 7(53), 33486-33493.
34. El-Sheekh, M.M., Yousuf, W.E., Kenawy, E.R. and Mohamed, T.M. (2023) Biosynthesis of cellulose from Ulva lactuca, manufacture of nanocellulose and its application as antimicrobial polymer. Scientific Reports, 13(1), 10188.
35. Abbasi, B.A., Iqbal, J., Yaseen, T., Zahra, S.A., Ali, S., Uddin, S., Mahmood, T., Kanwal, S., El-Serehy, H.A., and Chalgham, W. (2023) Exploring Physical Characterization and Different Bio-Applications of Elaeagnus angustifolia Orchestrated Nickel Oxide Nanoparticles. Molecules, 28(2), 654.
36. Sankar, A. U. R., Kiran, Y. B., Mohan, V. M., Kumar, A. K., and Varalakshmi, M. V. (2023) Green synthesis of cotton flower shaped nickel oxide nanoparticles: Anti-bacterial and tribological studies. Inorganic Chemistry Communications, 157, 111239.
37. Habtemariam, A. B., Oumer, M. (2020) Plant extract mediated synthesis of nickel oxide nanoparticles. Mater. Int, 2, 205-209.
38. Habibi, Y., Lucia, L. A. and Rojas, O. J. (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews, 110(6), 3479-3500.
39. G. T. Anand, R. Nithiyavathi, R. Ramesh, S. J. Sundaram and K. Kaviyarasu. ,2020) Structural and optical properties of nickel oxide nanoparticles: investigation of antimicrobial applications. Surf. Interfaces, 18, 100460.
40. S. T. Fardood, A. Ramazani and S. Moradi. (2017) A novel green synthesis of nickel oxide nanoparticles using Arabic gum”. ChemJMold. 12, 115-118.
41. S. M. Gholami, S. Z. Gholami, G. M. Shams, A. Akbarzadeh, G. Riazi and A. M. Razzaghi. (2016) Biogenic approach using sheep milk for the synthesis of platinum nanoparticles: the role of milk protein in platinum reduction and stabilization”. Int. J. Nanosci. Nanotechnol. 12, 199-206.
42. Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A. P., Oksman, K., Pothan, L. A. (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 22, 1075-1090.
43. Abd El-Lateef, H. M., Gouda, M. (2021) Novel nanocomposites of nickel and copper oxide nanoparticles embedded in a melamine framework containing cellulose nanocrystals: Material features and corrosion protection applications. Journal of Molecular Liquids, 342, 116960.