How to cite this paper
Rhilassi, A., Ferraa, N & Bennani-Ziatni, M. (2024). Kinetic, isotherm and thermodynamic studies of the adsorption of phenol and tyrosine onto apatitic tricalcium phosphate.Current Chemistry Letters, 13(2), 403-416.
Refrences
1 Kasbaji M., Mennani M., Oubenali M., Ait Benhamou A., Boussetta A., Ablouh E., Mbarki M., Grimi N., El Achaby M., and Moubarik A. (2023) Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. Environ. Pollut., 335, 15 (10) 122349.
2 Kasbaji M., Mennani M., Grimi N., Oubenali M., Mbarki M., EL Zakhem H., and Moubarik A. (2023) Adsorption of cationic and anionic dyes onto coffee grounds cellulose/ sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance. Int. J. Biol. Macromol., 1(6)124288.
3 Kasbaji M., Mennani M., Boussetta A., Grimi N., Barba F. J., and Mbarki M. (2022) Bio-adsorption performances of methylene blue (MB) dye on terrestrial and marine natural fibers: Effect of physicochemical properties, kinetic models and thermodynamic parameters. Sep. Sci. Technol., 58(2) 221–240.
4 Kasbaji M., Mennani M., Grimi N., Barba F. J., Oubenali M., Simirgiotis M. J., Mbarki M., Moubarik A. (2022) Implementation and physico-chemical characterization of new alkali-modified bio-sorbents for cadmium removal from industrial discharges: Adsorption isotherms and kinetic approaches. Process Biochem., 120 (9) 213-226
5 Balasooriya I. L., Chen J., Gedara S. M. K., Yingchao Han Y., and Wickramaratne M. N. (2022) Applications of Nano Hydroxyapatite as Adsorbents: A Review. Nanomater., 12 (14), 2324.
6 Wei W., Sun R., Cui J., and Wei Z. (2010) Removal of nitrobenzene from aqueous solution by adsorption on nanocrystalline hydroxyapatite. Desalination, 263 (1-3) 89–96.
7 Dhamija M., Tyagi R., Kalra N., and Khatri A. (2022) Efficacy of Resin Infiltration and Fluoride Casein Phosphopeptide Amorphous Calcium Phosphate Varnish on Non-cavitated Active White Spot Lesions in Children: A Randomized Clinical Trial. Pesqui. Bras. Odontopediatria Clín. Integr. 22 (12) e210094.
8 Kouar J., Ould Bellahcen T., El Amrani A., Cherif A., and Kamil N. (2021) Removal of Eriochrome Black T dye from aqueous solutions by using nanocrystalline calcium phosphate tricalcic apatitic. Mor. J. Chem., 9 (4) 715-727.
9 El Rhilassi A., Oukkass O., and Bennani-Ziatni M. (2023) Isotherms, kinetics, and thermodynamics of methionine adsorption onto poorly crystalline hydroxyapatite with different Ca/P ratios. Curr. Chem. Lett., 12, 781–798.
10 Costa Marques R. D., Simon J., d’Arros C., Landfester K., Jurk K., and Maila¨nder V. (2022) Proteomics reveals differential adsorption of angiogenic platelet lysate proteins on calcium phosphate bone substitute materials. Regen. Biomater., 9, rbac044.
11 Dalia A. A., Fatma A. S., and Hoda A. E. (2023) Kinetics and Isotherm Studies for Adsorption of Gentian Violet Dye from Aqueous Solutions Using Synthesized Hydroxyapatite. J Environ Public Health., Article ID 15, 7418770.
12 Mourid E., EL Qor i., Benaziz L., Lakraimi M. and El khattabi E. (2018) Evaluation of the adsorption capacity of Natural Phosphate to remove Remazol Brilliant Blue R dye in aqueous solution. Mor. J. Chem., 6 (3) 425-433.
13 Wang B., Zhang Z., and Pan H., (2023) Bone Apatite Nanocrystal: Crystalline Structure, Chemical Composition, and Architecture. Biomimetics, 8 (1), 90.
14 Zou Q., Chen H., and LI W. (2019) In vivo changes of nanoapatite crystals during bone reconstruction and the differences with native bone apatite. Sci. Adv., (5) eaay6484.
15 Destainville A., Champion E., Bernache-Assollant D., and Laborde E. (2003) Synthesis, characterization and thermal behavior of Apatitic Tricalcium Phosphate, Mater. Chem. Phys., 80 (1) 269–277.
16 Lagergren S., and Svenska K. (1898) About of the theory of so - called adsorption of soluble substances. Vetenskapsakad Handl., 24 (2) 1-39.
17 Ho Y. S., and McKay G. (1999) Pseudo-second order model for sorption processes. Process Biochem., 34 (5) 451- 465.
18 Chien S.H., and Clayton W.R. (1980) Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil. Sci. Soc. Am. J., 44 (2) 265-268.
19 Weber W. J., and Morris J. C. (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 89 (SA2) 31- 40.
20 El Rhilassi A., and Bennani Ziatni M. (2023) Studies of kinetic models and adsorption isotherms: application on the interaction of insulin with synthetic hydroxyapatite. Curr. Chem. Lett., 12, 445–458.
21 Langmuir I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40 (9) 1361-1403.
22 Freundlich H. M. F. (1906) Über die adsorption in lösungen. Z. Phys. Chem., 57, 385-470.
23 Temkin M. J., and Pyzhev V. (1940) Recent modifications to Langmuir Isotherms. Acta. Physicochimie USSR., 12, 217-222.
24 Dubinin M. M., and Radushkevich L. V. (1947) Equation of the Characteristic Curve of Activated Charcoal. J. Proc. Acad. Sci. USSR, Phys. Chem., 55, 331-333
25 Weber T. W., and Chakravorti R. K. (1974) Pore and solid diffusion models for fixed-bed adsorbers. Am. Inst. Chem. Eng. J., 20 (2) 228-238.
26 Ho Y. S. (2006) Isotherms for the sorption of lead onto peat: Comparison of linear and non-linear methods. Pol. J.Environ. Stud., 15 (1) 81–86.
27 Jiang L., Li S., Yu H., Zou Z., Hou X., and Shen F. (2016) Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl. Surf. Sci., 369, 398- 413.
28 Hall K. R., Eagleton L. C., Acrivos A., and Vermeulen T. (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fund., 5(2) 212-223.
29 Helfferich F. (1962) Ion exchange. McGraw-Hill, New York, 335-360.
30 El Rhilassi A., and Bennani Ziatni M., (2022) Experimental study on the interaction of insulin with apatitic calcium phosphates analogous to bone mineral: adsorption and release. Curr. Chem. Lett., 11, 341–352.
31 Ho Y.S. (2006) Isotherms for the sorption of lead onto peat : Comparison of linear and non-linear methods. P. J. Env. Studies, 15, 81–86.
32 Al-Anber Z.A., and Matouq M.A.D. (2008) Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J. Hazard. Mater., 151, 194–201.
33 Jiang L., Li S., Yu H., Zou Z., Hou X., Shen F., Li C., and Yao X. (2016) Amino and thiol modified magnetic multiwalled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl. Surf. Sci., 369, 398–413.
34 Hameed B. H., Ahmad A. A., and Aziz N. (2007). Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem. Eng. J., 133 (1-3) 195–203.
35 Singh T.S., and Pant K.K. (2004) Equilibrium, Kinetics and Thermodynamic Studies for Adsorption of As (III) on Activated Alumina. Sep. Pur. Technol., 36 (2) 139–147.
36 El Boujaady H., Mourabet M., El Rhilassi A., Bennani-Ziatni M., El Hamri R., and Taitai A. (2017) Interaction of adsorption of reactive yellow 4 from aqueous solutions onto synthesized calcium Phosphate. J. Saudi Chem. Soc., 21, S94–S100.
37 Lemlikchi O., Fiallo M., Scharrock P., Nzihou A., and Mecherri M.O. (2012) Treatment of textile waste waters by hydroxyapatite co-precipitation with adsorbent regeneration and reuse. Waste and Biomass Valor., 3(1) 75-79.
2 Kasbaji M., Mennani M., Grimi N., Oubenali M., Mbarki M., EL Zakhem H., and Moubarik A. (2023) Adsorption of cationic and anionic dyes onto coffee grounds cellulose/ sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance. Int. J. Biol. Macromol., 1(6)124288.
3 Kasbaji M., Mennani M., Boussetta A., Grimi N., Barba F. J., and Mbarki M. (2022) Bio-adsorption performances of methylene blue (MB) dye on terrestrial and marine natural fibers: Effect of physicochemical properties, kinetic models and thermodynamic parameters. Sep. Sci. Technol., 58(2) 221–240.
4 Kasbaji M., Mennani M., Grimi N., Barba F. J., Oubenali M., Simirgiotis M. J., Mbarki M., Moubarik A. (2022) Implementation and physico-chemical characterization of new alkali-modified bio-sorbents for cadmium removal from industrial discharges: Adsorption isotherms and kinetic approaches. Process Biochem., 120 (9) 213-226
5 Balasooriya I. L., Chen J., Gedara S. M. K., Yingchao Han Y., and Wickramaratne M. N. (2022) Applications of Nano Hydroxyapatite as Adsorbents: A Review. Nanomater., 12 (14), 2324.
6 Wei W., Sun R., Cui J., and Wei Z. (2010) Removal of nitrobenzene from aqueous solution by adsorption on nanocrystalline hydroxyapatite. Desalination, 263 (1-3) 89–96.
7 Dhamija M., Tyagi R., Kalra N., and Khatri A. (2022) Efficacy of Resin Infiltration and Fluoride Casein Phosphopeptide Amorphous Calcium Phosphate Varnish on Non-cavitated Active White Spot Lesions in Children: A Randomized Clinical Trial. Pesqui. Bras. Odontopediatria Clín. Integr. 22 (12) e210094.
8 Kouar J., Ould Bellahcen T., El Amrani A., Cherif A., and Kamil N. (2021) Removal of Eriochrome Black T dye from aqueous solutions by using nanocrystalline calcium phosphate tricalcic apatitic. Mor. J. Chem., 9 (4) 715-727.
9 El Rhilassi A., Oukkass O., and Bennani-Ziatni M. (2023) Isotherms, kinetics, and thermodynamics of methionine adsorption onto poorly crystalline hydroxyapatite with different Ca/P ratios. Curr. Chem. Lett., 12, 781–798.
10 Costa Marques R. D., Simon J., d’Arros C., Landfester K., Jurk K., and Maila¨nder V. (2022) Proteomics reveals differential adsorption of angiogenic platelet lysate proteins on calcium phosphate bone substitute materials. Regen. Biomater., 9, rbac044.
11 Dalia A. A., Fatma A. S., and Hoda A. E. (2023) Kinetics and Isotherm Studies for Adsorption of Gentian Violet Dye from Aqueous Solutions Using Synthesized Hydroxyapatite. J Environ Public Health., Article ID 15, 7418770.
12 Mourid E., EL Qor i., Benaziz L., Lakraimi M. and El khattabi E. (2018) Evaluation of the adsorption capacity of Natural Phosphate to remove Remazol Brilliant Blue R dye in aqueous solution. Mor. J. Chem., 6 (3) 425-433.
13 Wang B., Zhang Z., and Pan H., (2023) Bone Apatite Nanocrystal: Crystalline Structure, Chemical Composition, and Architecture. Biomimetics, 8 (1), 90.
14 Zou Q., Chen H., and LI W. (2019) In vivo changes of nanoapatite crystals during bone reconstruction and the differences with native bone apatite. Sci. Adv., (5) eaay6484.
15 Destainville A., Champion E., Bernache-Assollant D., and Laborde E. (2003) Synthesis, characterization and thermal behavior of Apatitic Tricalcium Phosphate, Mater. Chem. Phys., 80 (1) 269–277.
16 Lagergren S., and Svenska K. (1898) About of the theory of so - called adsorption of soluble substances. Vetenskapsakad Handl., 24 (2) 1-39.
17 Ho Y. S., and McKay G. (1999) Pseudo-second order model for sorption processes. Process Biochem., 34 (5) 451- 465.
18 Chien S.H., and Clayton W.R. (1980) Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil. Sci. Soc. Am. J., 44 (2) 265-268.
19 Weber W. J., and Morris J. C. (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 89 (SA2) 31- 40.
20 El Rhilassi A., and Bennani Ziatni M. (2023) Studies of kinetic models and adsorption isotherms: application on the interaction of insulin with synthetic hydroxyapatite. Curr. Chem. Lett., 12, 445–458.
21 Langmuir I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40 (9) 1361-1403.
22 Freundlich H. M. F. (1906) Über die adsorption in lösungen. Z. Phys. Chem., 57, 385-470.
23 Temkin M. J., and Pyzhev V. (1940) Recent modifications to Langmuir Isotherms. Acta. Physicochimie USSR., 12, 217-222.
24 Dubinin M. M., and Radushkevich L. V. (1947) Equation of the Characteristic Curve of Activated Charcoal. J. Proc. Acad. Sci. USSR, Phys. Chem., 55, 331-333
25 Weber T. W., and Chakravorti R. K. (1974) Pore and solid diffusion models for fixed-bed adsorbers. Am. Inst. Chem. Eng. J., 20 (2) 228-238.
26 Ho Y. S. (2006) Isotherms for the sorption of lead onto peat: Comparison of linear and non-linear methods. Pol. J.Environ. Stud., 15 (1) 81–86.
27 Jiang L., Li S., Yu H., Zou Z., Hou X., and Shen F. (2016) Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl. Surf. Sci., 369, 398- 413.
28 Hall K. R., Eagleton L. C., Acrivos A., and Vermeulen T. (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fund., 5(2) 212-223.
29 Helfferich F. (1962) Ion exchange. McGraw-Hill, New York, 335-360.
30 El Rhilassi A., and Bennani Ziatni M., (2022) Experimental study on the interaction of insulin with apatitic calcium phosphates analogous to bone mineral: adsorption and release. Curr. Chem. Lett., 11, 341–352.
31 Ho Y.S. (2006) Isotherms for the sorption of lead onto peat : Comparison of linear and non-linear methods. P. J. Env. Studies, 15, 81–86.
32 Al-Anber Z.A., and Matouq M.A.D. (2008) Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J. Hazard. Mater., 151, 194–201.
33 Jiang L., Li S., Yu H., Zou Z., Hou X., Shen F., Li C., and Yao X. (2016) Amino and thiol modified magnetic multiwalled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl. Surf. Sci., 369, 398–413.
34 Hameed B. H., Ahmad A. A., and Aziz N. (2007). Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem. Eng. J., 133 (1-3) 195–203.
35 Singh T.S., and Pant K.K. (2004) Equilibrium, Kinetics and Thermodynamic Studies for Adsorption of As (III) on Activated Alumina. Sep. Pur. Technol., 36 (2) 139–147.
36 El Boujaady H., Mourabet M., El Rhilassi A., Bennani-Ziatni M., El Hamri R., and Taitai A. (2017) Interaction of adsorption of reactive yellow 4 from aqueous solutions onto synthesized calcium Phosphate. J. Saudi Chem. Soc., 21, S94–S100.
37 Lemlikchi O., Fiallo M., Scharrock P., Nzihou A., and Mecherri M.O. (2012) Treatment of textile waste waters by hydroxyapatite co-precipitation with adsorbent regeneration and reuse. Waste and Biomass Valor., 3(1) 75-79.