How to cite this paper
Deena, P., Selvaraj, S & Thomas, K. (2024). Chitosan – hydrogen iodide salt supported graphite electrode: A simple and novel electrode for the reduction of nitro group under electrochemical condition.Current Chemistry Letters, 13(2), 359-366.
Refrences
1. Koutros S., Lynch C. F., Ma X., Lee W. J., Hoppin J. A., Christensen C. H., Andreotti G., Freeman L. B., Rusiecki J. A., Hou L., Sandler D. P., Alavanja M. C. (2009) Heterocyclic aromatic amine pesticide use and human cancer risk: results from the U.S. Agricultural Health Study. Int. J. Cancer., 124 (5) 1206-1212.
2. Pinheiro H. M.,Touraud E., and Thomas O. (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry waste waters. Dyes Pigments, 61 (2) 121-139.
3. Sakai T. (2001) Stepwise determination of quaternary ammonium salts and aromatic amines in pharmaceuticals by ion association titration. Anal. Sci., 17, 1379–1382.
4. Radomski. J. (1979) The primary aromatic amines: their biological properties and structure-activity relationships. Ann. Rev. Pharmacol. Toxicol., 19, 129-157.
5. Ning X. A., Liang J. Y., Li R. J., Hong Z.,Wang Y. J., Chang K. L., Zhang Y. P., Yang Z. Y. (2015) Aromatic amine contents, component distributions and risk assessment in sludge from 10 textile-dyeing plants. Chemosphere, 134, 367-373.
6. Wienhofer G., Sorribes I., Boddien A., Westerhaus F., Junge K., Junge H., Llusar R., Beller M. (2011) General and selective iron-catalyzed transfer hydrogenation of nitroarene without base. J. Am. Chem. Soc., 133 (32) 12875-12879.
7. Jagadeesh R.V., Wienhofer G., Westerhaus F. A., Surkus A. E., Pohl M. M., Junge H., Junge K., and Beller M. (2011) Efficient and highly selective iron-catalyzed reduction of nitroarenes. Chem. Commun., 47, 10972-10974.
8. Zengin N., Goksu H., Sen F. (2021) Chemoselective hydrogenation of aromatic nitro compo- unds in the presence of homogeneous Pd based catalysts. Chemosphere, 282, 130887.
9. Gamble A. B., Garner J., Gordon C. P., O'Conner S. M. J., and Keller P. A. (2007) Aryl nitro reduction with iron powder or stannous chloride under ultrasonic irradiation, Synthetic Com- munications, 37 (16) 2777-2786.
10. Kumar P., and Rai K. L. (2012) Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: mild and efficient method for zinc activation. Chemical Papers, 66 (8) 772-778.
11. Gowda D. C., Mahesh B., and Gowda S. (2001) Zinc-catalyzed ammonium formate reductions: rapid and selective reduction of aliphatic and aromatic nitro compounds. ChemInform, 32 (23) 75-77.
12. Khan F. A., Dash J., Sudheer C., and Gupta R. K. (2003) Chemoselective reduction of arom- atic nitro and azo compounds in ionic liquids using zinc and ammonium salts. Tetrahedron Letters, 44 (42) 7783-7787.
13. Gohain S., Prajapati D., and Sandhu J. S. (1995) A new and efficient method for the selective reduction of nitroarenes: use of ammonium sulphate-sodium borohydride. Chemistry Letters, 1995, 725-726.
14. Zhou Z. H., Xu Y. B., Wu S. M., Ling W. J., Zhang L., and Wang Z. Q. (2022) Selective nitro reduction of ester substituted nitroarenes by NaBH4-FeCl2. Pharmaceutical Fronts, 04 (03) e151-e156.
15. Czubara A. B., Kula K., Wnorowski A., Biernasiuk A.,Popiołek L., Miodowski D., Demchuk O. M., and Jasinski R. (2019) Novel functionalized β-nitrostyrenes: promising candidates for new antibacterial drugs. Saudi. Pharm. J., 27 (4) 593-601.
16. Kula K., Dresler E., Demchuk O., Jasinski R. (2015) New aldimine N-oxides - precursors for preparation of heterocycles with potential biological activity. Przem. Chem. 94 (8) 1385.
17. Rodrigo E., and Waldvogel S. R. (2018) Simple electrochemical reduction of nitrones to amines. Chem. Sci., 10, 2044-2047.
18. Burge H. D., Collins D. J., and Davis B. H. (1980) Intermediates in the Raney nickel catalysed hydrogenation of nitrobenzene to aniline. Ind. Eng. Chem. Prod. Res. Dev., 19 (3) 389-391.
19. Liu M., Li Y. P., Cao H. B., and Zhang Y. (2007) Electrochemical reduction of nitrobenzene at carbon nanotube electrode. J. Hazard Mater., 148 (1-2) 158–163.
20. Liu J., Lu L., Wood D., and Lin S. (2020) New redox strategies in organic synthesis by means of electrochemistry and photochemistry. ACS Cent Sci., 6 (8) 1317-1340.
21. Mohle S., Zirbes M., Rodrigo E., Gieshoff T., Wiebe A., and Waldvogel S R. (2018) Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. Engl., 57 (21) 6018-6041.
22. Wiebe A., Gieshoff T., Mohle S., Rodrigo E., Zirbes M., and Waldvogel S. R. (2018) Electrif- ying organic synthesis. Angew. Chem. Int. Ed. Engl., 57 (20) 5594-5619.
23. Schotten C., Nicholls T. P., Bourne R. A., Kapur N., Nguyen B. N., and Willans C. E. (2020) Making electrochemistry easily accessible to the synthetic chemist. Green Chem., 22, 3358-3375.
24. Pollok D., and Waldvogel S.R. (2020) Electro-organic synthesis – a 21st century technique. Chem. Sci., 11, 12386-12400.
25. Lund H., and Hammerich O. (2001) Organic Electrochemistry, 4th Ed, Marcel Dekker, New York.
26. Yount J., Piercey D. G. (2022) Electrochemical synthesis of high-nitrogen materials and energetic materials. Chem. Rev., 122 (9) 8809-8840.
27. Anastas P. T., and Warner J. C. (1998) Green Chemistry: Theory and Practice, 14th Ed, Oxford University Press, Oxford (England).
28. Isse A. A., Giusti A. D., Gennaro A., and Falciola L. (2006) Electrochemical reduction of benzyl halides at a silver electrode. Electrochimica Acta. 51 (23) 4956-4964.
29. Gurtner C., Wun A. W., and Sailor M. J. (1999) Surface modification of porous silicon by electrochemical reduction of organo halides. Angew. Chem. Int. Ed., 38 (13-14) 1966-1968.
30. Torben L., and Henning L. (1987) Indirect electrochemical reduction of some benzyl chlorides. Acta Chemica Scandinavica. 41b, 93-102.
31. Tomat R., and Rigo A. (1984) Electrochemical oxidation of toluene promoted by OH radicals. J. Appl. Electrochem., 14 (1) 1–8.
32. Wang D., Wang P., Wang S., Chen Y. H., Zhang H., and Lei A. (2019) Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nat. Commun. 10 (1) 2796.
33. Zhao G., Jiang T., Wu W., Han B., Liu Z., and Gao H. (2004) Electro-oxidation of benzyl alcohol in a biphasic system consisting of supercritical co2 and ionic liquids. Journal of Physical Chemistry B, 108, 13052-13057.
34. Bender M. T.,Yuan X.,Goetz M. K., and Choi K. S. (2022) Electrochemical hydrogenation, hydrogenolysis, and dehydrogenation for reductive and oxidative biomass upgrading using 5-hydroxymethylfurfural as a model system. ACS Catal. 12 (19) 12349–12368.
35. Vunain E., Mishra A. K., and Mamba B. B. (2017) Fundamentals of chitosan for biomedical applications. Chitosan Based Biomaterials, 1, 3-30.
36. Aibani N., Rai R., Patel P., Cuddihy G., and Wasan E. K. (2021) Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics, 13 (10) 1686.
37. Riofrio A., Alcivar T., and Baykara H. (2021) Environmental and economic viability of chitosan production in guayas-ecuador: a robust investment and life cycle analysis. ACS Omega, 6 (36) 23038–23051.
38. Saeed A., Zahid S., Sajid M., Ud Din S., Alam M. K., Chaudhary F. A., Kaleem M., Alswairki H.J., and Abutayyem H. (2022) Physico-mechanical properties of commercially available tissue conditioner modified with synthesized chitosan oligosaccharide. polymers 14 (6) 1233.