How to cite this paper
Raphael, V., Shaju, K., Bindu, T & Sini, A. (2024). In silico investigations on the repurposing of antivirals for Covid-19 and pharmacophore modelling.Current Chemistry Letters, 13(1), 199-206.
Refrences
1. Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.htm (accessed Apr 3, 2022).
2. COVID Live - Coronavirus Statistics - Worldometer. Available from: https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1 (accessed Apr 3, 2022).
3. Sapkal G. N., Yadav P. D., Ella R., Deshpande G. R., Sahay R. R., Gupta N., Neutralization Potential of COVAXIN Vaccinated Individuals Sera against Delta Variant (B.1.617.2) of SARS-CoV-2. bioRxiv 2021, 2021.07.09.452097, https://doi.org/10.1101/2021.07.09.452097.
4. Bharat Biotech. COVAXIN. Available from: https://www.bharatbiotech.com/covaxin.html.
5. Beigel J. H., Tomashek K. M., Dodd L. E., Mehta A. K., Zingman B. S., Kalil A. C. (2020) Remdesivir for the Treatment of Covid-19 — Final Report. N Engl J Med. 383 (19), 1813–1826, doi: 10.1056/NEJMoa2007764.
6. Sheahan T. P., Sims A. C., Leist S. R., Schäfer A., Won J., Brown A. J. (2020) Comparative Therapeutic Efficacy of Remdesivir and Combination Lopinavir, Ritonavir, and Interferon Beta against MERS-CoV. Nat Commun. 11 (1), 222, doi: 10.1038/s41467-019-13940-6.
7. Yanes T., Youngpairoj A. S., Dharajiya N., Gomez G., Rosario K., Benamu E., et al. (2021) Genetic Variants Associated with Severity of COVID-19 Disease: A Review of the Literature and Implications for Personalized Treatment. Pharmacotherapy. 41 (7), 721–735, doi: 10.1002/phar.2521.
8. Goyal B., Goyal D. (2020) Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy. ACS Comb Sci. 22 (6), 297–305, doi: 10.1021/acscombsci.0c00027.
9. Raphael V. P., Shanmughan S. K. (2020) Computational Evaluation of the Inhibition Efficacies of HIV Antivirals on SARS-CoV-2 (COVID-19) Protease and Identification of 3D Pharmacophore and Hit Compounds. Adv. Pharmacol. Pharm. Sci. 8818008, http://dx.doi.org/10.1155/2020/8818008.
10. Raphael V.P., Shanmughan S.K. (2020) In silico evaluation on the inhibition efficacy of five antivirals on SARS-CoV-2 protease (COVID-19). Indian J. Pharm. Educ. 54(4), 1031–1038. http://dx.doi.org/10.5530/ijper.54.4.197
11. Zhang L., Fang X., Liu X., Ou H. Zhang H., Wang J., et al. (2020) Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers. Chem. Commun. 56(70), 10235–10238. http://dx.doi.org/10.1039/d0cc03993d
12. Smits V. A. J., Hernández-Carralero E., Paz-Cabrera M.C., Cabrera E., Hernández-Reyes Y., Hernández-Fernaud J. R. (2021) The Nucleocapsid protein triggers the main humoral immune response in COVID-19 patients. Biochem. Biophys. Res. Commun. 543, 45–49. http://dx.doi.org/10.1016/j.bbrc.2021.01.073
13. Elfiky A. A. (2020) Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 248, 117477.,
14. Vankadari N., Wilce J. A. (2020) Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect. 9(1), 601–604. http://dx.doi.org/10.1080/22221751.2020.1739565
15. Walls A. C., Park Y. J., Tortorici M. A., Wall A., McGuire A. T., Veesler D. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2), 281–292.e6.
16. Schneidman-Duhovny D., Dror O., Inbar Y., Nussinov R., Wolfson H.J. (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res. 36, W223–W228. http://dx.doi.org/10.1093/nar/gkn187
17. Muegge I., Heald S. L., Brittelli D. (2001) Simple selection criteria for drug-like chemical matter. J. Med. Chem. 44(12), 1841–1846.
18. Wang Y., Zhang D., Du G., (2020) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395(10236), 1569–1578.
19. Fromm M. F. (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol. Sci. 25(8), 423–429.
20. Wienkers L. C., Heath T.G. (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov. 4(10):825-33. doi: 10.1038/nrd1851.
2. COVID Live - Coronavirus Statistics - Worldometer. Available from: https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1 (accessed Apr 3, 2022).
3. Sapkal G. N., Yadav P. D., Ella R., Deshpande G. R., Sahay R. R., Gupta N., Neutralization Potential of COVAXIN Vaccinated Individuals Sera against Delta Variant (B.1.617.2) of SARS-CoV-2. bioRxiv 2021, 2021.07.09.452097, https://doi.org/10.1101/2021.07.09.452097.
4. Bharat Biotech. COVAXIN. Available from: https://www.bharatbiotech.com/covaxin.html.
5. Beigel J. H., Tomashek K. M., Dodd L. E., Mehta A. K., Zingman B. S., Kalil A. C. (2020) Remdesivir for the Treatment of Covid-19 — Final Report. N Engl J Med. 383 (19), 1813–1826, doi: 10.1056/NEJMoa2007764.
6. Sheahan T. P., Sims A. C., Leist S. R., Schäfer A., Won J., Brown A. J. (2020) Comparative Therapeutic Efficacy of Remdesivir and Combination Lopinavir, Ritonavir, and Interferon Beta against MERS-CoV. Nat Commun. 11 (1), 222, doi: 10.1038/s41467-019-13940-6.
7. Yanes T., Youngpairoj A. S., Dharajiya N., Gomez G., Rosario K., Benamu E., et al. (2021) Genetic Variants Associated with Severity of COVID-19 Disease: A Review of the Literature and Implications for Personalized Treatment. Pharmacotherapy. 41 (7), 721–735, doi: 10.1002/phar.2521.
8. Goyal B., Goyal D. (2020) Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy. ACS Comb Sci. 22 (6), 297–305, doi: 10.1021/acscombsci.0c00027.
9. Raphael V. P., Shanmughan S. K. (2020) Computational Evaluation of the Inhibition Efficacies of HIV Antivirals on SARS-CoV-2 (COVID-19) Protease and Identification of 3D Pharmacophore and Hit Compounds. Adv. Pharmacol. Pharm. Sci. 8818008, http://dx.doi.org/10.1155/2020/8818008.
10. Raphael V.P., Shanmughan S.K. (2020) In silico evaluation on the inhibition efficacy of five antivirals on SARS-CoV-2 protease (COVID-19). Indian J. Pharm. Educ. 54(4), 1031–1038. http://dx.doi.org/10.5530/ijper.54.4.197
11. Zhang L., Fang X., Liu X., Ou H. Zhang H., Wang J., et al. (2020) Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers. Chem. Commun. 56(70), 10235–10238. http://dx.doi.org/10.1039/d0cc03993d
12. Smits V. A. J., Hernández-Carralero E., Paz-Cabrera M.C., Cabrera E., Hernández-Reyes Y., Hernández-Fernaud J. R. (2021) The Nucleocapsid protein triggers the main humoral immune response in COVID-19 patients. Biochem. Biophys. Res. Commun. 543, 45–49. http://dx.doi.org/10.1016/j.bbrc.2021.01.073
13. Elfiky A. A. (2020) Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 248, 117477.,
14. Vankadari N., Wilce J. A. (2020) Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect. 9(1), 601–604. http://dx.doi.org/10.1080/22221751.2020.1739565
15. Walls A. C., Park Y. J., Tortorici M. A., Wall A., McGuire A. T., Veesler D. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2), 281–292.e6.
16. Schneidman-Duhovny D., Dror O., Inbar Y., Nussinov R., Wolfson H.J. (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res. 36, W223–W228. http://dx.doi.org/10.1093/nar/gkn187
17. Muegge I., Heald S. L., Brittelli D. (2001) Simple selection criteria for drug-like chemical matter. J. Med. Chem. 44(12), 1841–1846.
18. Wang Y., Zhang D., Du G., (2020) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395(10236), 1569–1578.
19. Fromm M. F. (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol. Sci. 25(8), 423–429.
20. Wienkers L. C., Heath T.G. (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov. 4(10):825-33. doi: 10.1038/nrd1851.