How to cite this paper
Dubey, S., Shukla, A & Shukla, R. (2023). Green synthesis, characterization, and biological activities of Zn, Cu monometallic and bimetallic nanoparticles using Borassus flabellifer leaves extract.Current Chemistry Letters, 12(4), 799-812.
Refrences
1 Mauricio M. D., Guerra-Ojeda S., Marchio P., Valles S. L., Aldasoro M., Escribano-Lopez I., Herance J. R., Rocha M., Vila J. M., and Victor V. M. (2018) Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. Oxid. Med. Cell. Longev., 1–20.
2 Rastogi A., Tripathi D. K., Yadav S., Chauhan D. K., Živˇcák M., Ghorbanpour M., El-Sheery N. I., and Brestic M. (2019) Application of Silicon Nanoparticles in Agriculture. 3 Biotech., 9 (3) 90.
3 Damian K. C., Roman J. J., Przemysław J. J., and Joanna L. (2017) Surface structure of cobalt, palladium, and mixed oxide-based catalysts and their activity in methane combustion studied by means of micro-Raman spectroscopy. J. Raman Spectrosc., 48 (12) 1871-1880.
4 Janaki A. C., Sailatha E., and Gunasekaran S. (2015) Synthesis, Characteristics and Antimicrobial Activity of ZnO Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 144 17–22.
5 Kaid M., Ali A., Shamsan A., Younes S., Abdel-Raheem S., Abdul-Malik M., and Salem W. (2022) Efficiency of maturation oxidation ponds as a post-treatment technique of wastewater. Curr. Chem. Lett., 11 (4) 415-422.
6 Mohamed S. K., Mague J. T., Akkurt M., Alfayomy A. M., Ragab F. A. F., and Abd Ul-Malik M. A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-fluoro-phen-yl)3-{[(4-meth-oxy-phen-yl)formamido]-imino}-7-methyl-2H,3H,5H-[1,3]thia-zolo[3,2-a]pyrimidine-6-carboxyl-ate 0.25-hydrate. Acta Crystallogr E Crystallogr Commun., 78 (9) 880-884.
7 Ahmeda A. A., Mohamed S. K., and Shaban A. A. (2022) Abdel-Raheemd Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm. Curr. Chem. Lett., 11 359–370.
8 Saleh T. A. (2020) Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov., 20 1–11.
9 Agarwal H., Venkat Kumar S., and Rajeshkumar S. (2017) A Review on Green Synthesis of Zinc Oxide Nanoparticles-An Eco-Friendly Approach. Resour. Effic. Technol., 3 406–413.
10 Thema F. T., Manikandan E., Dhlamini M. S., and Maaza M. (2015) Green Synthesis of ZnO Nanoparticles via Agathosma Betulina Natural Extract. Mater. Lett., 161 124–127.
11 Melk M. M., El-Hawary S. S., Melek F. R., Saleh D. O., Ali O. M., Raey M. A., and Selim N. M. (2021) Nano Zinc Oxide Green-Synthesized from Plumbago Auriculata Lam. Alcoholic Extract. Plants., 10 2447.
12 Ngoepe N. M., Mbita Z., Mathipa M., Mketo N., Ntsendwana B., and Hintsho-Mbita N. C. (2018) Biogenic Synthesis of ZnO Nanoparticles Using Monsonia Burkeana for Use in Photocatalytic, Antibacterial and Anticancer Applications. Ceram. Int., 44 16999–17006.
13 Balogun F.O., and Ashafa A. O. T. (2021) Potentials of Synthesised Lessertia Montana Zinc Oxide Nanoparticles on Free Radicals-Mediated Oxidative Stress and Carbohydrate- Hydrolysing Enzymes. Acta Biol. Szeged., 64 239–249.
14 Mahlaule-Glory L. M., Mbita Z., Ntsendwana B., Mathipa M. M., Mketo N., and Hintsho-Mbita N. C. (2019) ZnO Nanoparticles via Sutherlandia Frutescens Plant Extract: Physical and Biological Properties. Mater. Res. Express., 6 085006.
15 Mbenga Y., Mthiyane M. N., Botha T. L., Horn S., Pieters R., Wepener V., and Onwudiwe D. C. (2022) Nanoarchitectonics of ZnO Nanoparticles Mediated by Extract of Tulbaghia Violacea and Their Cytotoxicity Evaluation. J. Inorg. Organomet. Polym. Mater., 32 3249–3259.
16 Diallo A., Ngom B. D., Park E., and Maaza M. (2015) Green Synthesis of ZnO Nanoparticles by Aspalathus Linearis: Structural & Optical Properties. J. Alloy. Compd., 646 425–430.
17 Adeyemi J. O., Onwudiwe D. C., and Oyedeji A. O. (2022) Biogenic Synthesis of CuO, ZnO, and CuO–ZnO Nanoparticles Using Leaf Extracts of Dovyalis Caffra and Their Biological Properties. Molecules., 27 3206.
18 Adeyemi J. O., Elemike E. E., and Onwudiwe D. C. (2019) ZnO Nanoparticles Mediated by Aqueous Extracts of Dovyalis Caffra Fruits and the Photocatalytic Evaluations. Mater. Res. Express., 6 1–8.
19 Iravani S. (2011) Green Synthesis of Metal Nanoparticles Using Plants. Green Chem., 13 2638–2650.
20 Jodlowski P. J., Chlebda D, Piwowarczyk E, Chrzan M, Jedrzejcczyk R.J. Sitaez M, Wegrzynowicz A, Kolodziej A, and Lojewska J. (2016) In situ and operando spectroscopic studies of sonically aided catalysts for biogas exhaust abatement. J. Mol. Struct., 11 (26) 132-140.
21 Lojewska J., Knapik A., Jodlowski P., Lojewski T., Kolodziej A. (2013) Topography and morphology of multicomponent catalytic materials based on Co, Ce and Pd oxides deposited on metallic structured carriers studied by AFM/Raman interlaced microscopes. Catal. Today., 16 11-17.
22 Lwaniszyn M., Piatek M., Gancarczyk A., Jodlowski P. J., Lojewska J., and Kolodziej A. (2017) Flow resistance and heat transfer in short channels of metallic monoliths: Experiments versus CFD. Int. J. Heat Mass Transf., 109 778-785.
23 Jodlowski P.J., Damian K. C., Roman J. J., Anna D., Łukasz K., and Maciej S. (2018) Characterisation of well-adhered ZrO2 layers produced on structured reactors using the sonochemical sol–gel method. Appl. Surf. Sci., 563-574.
24 Chlebda D. K., Stachurska P., Jędrzejczyk R. J., Kuterasiński Ł., Dziedzicka A., Górecka S., Chmielarz L., Łojewska J., Sitarz M., and Jodłowski P. J. (2018) DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions. Nanomaterials., 8 21.
25 Mohammadi R., Aziz A., Yangjeh H., Bayrami A., Latifi S., and Asadollah N. (2018) Green Synthesis of ZnO and ZnO / CuO Nanocomposites in Mentha Longifolia Leaf Extract: Characterization and Their Application as Anti-Bacterial Agents. J. Mater. Sci. Mater. Electron., 29 13596–13605.
26 Roy S., and Rhim J. W. (2019) Carrageenan-Based Antimicrobial Bionanocomposite Films Incorporated with ZnO Nanoparticles Stabilized by Melanin. Food Hydrocoll., 90 500–507.
27 Gholami P., Dinpazhoh L., Khataee A., and Orooji Y. (2019) Sonocatalytic Activity of Biochar-Supported ZnO Nanorods in Degradation of Gemifloxacin: Synergy Study, Effect of Parameters and Phytotoxicity Evaluation. Ultrason. Sonochem., 55 44–56.
28 Dobrucka R. (2018) Antioxidant and Catalytic Activity of Biosynthesized CuO Nanoparticles Using Extract of Galeopsidis Herba. J. Inorg. Organomet. Polym. Mater., 28 812–819.
29 Chang Y.N., Zhang M., Xia L., Zhang J., and Xing G. (2012) The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials., 5 2850–2871.
30 Shukla A., and Dubey S. (2022) A Review: Traditionally Used Medicinal Plants Of Family Arecaceae With Phytoconstituents And Therapeutic Applications. Int. J. boil. Pharm. Allied sci., 11 (12) 5864-5877.
31 Sharma G., Kumar A., Sharma S., Naushad M., Dwivedi R. P., Alothman Z. A., and Mola G. T. (2019) Novel Development of Nanoparticles to Bimetallic Nanoparticles and Their Composites: A Review. J. King Saud Univ. Sci., 31 257–269.
32 Mohanraj S., Kodhaiyolii S., Rengasamy M., and Pugalenthi V. (2014) Green Synthesized Iron Oxide Nanoparticles Effect on Fermentative Hydrogen Production by Clostridium acetobutylicum. Appl. Biochem. Biotechnol., 173 318–331.
33 Ezealisiji K. M., Siwe-Noundou X., Maduelosi B., Nwachukwu N., and Krause R. W. M. (2019) Green Synthesis of Zinc Oxide Nanoparticles Using Solanum torvum (L) leaf Extract and Evaluation of the Toxicological Profile of the ZnO Nanoparticles–Hydrogel Composite in Wistar Albino Rats. Int. Nano Lett., 9 99–107.
34 Zengin G., Uysal S., Ceylan R., and Aktumsek A. (2015) Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Ind. Crops Prod., 70 1–6.
35 Pradeep P. M., and Sreerama Y. N. (2015) Impact of processing on the phenolic profiles of small millets: Evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chem., 169 455–463.
36 Blois M. S. (1998) Antioxidants determination by the use of a stable free radical. Nature., 4617 (181) 1199-1200.
37 Re R., Pellegrini N., Proteggente A., Pannala A. Yang M., and Rice E. C. (1999) Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free Radic. Biol. Med., 26 1231-1237.
38 Kazeem I. M., and Ashafa T. A. O. (2015) In vitro antioxidant and antidiabetic potentials of Dianthus basuticus Burtt Davy whole plant extracts. J. Herb. Med., 5 158-164.
39 Kim J. S., Yang J., and Kim M. J. (2011) Alpha glucosidase inhibitory effect, anti microbial activity and UPLC analysis of Rhus verniciflua under various extract conditions. J. Med. Plants Res., 5 778-783.
40 Arul Ananth D., Sivasudha T., Rameshkumar A., Jeyadevi R., and Aseervatham S. B. (2013) Chemical constituents, in vitro antioxidant and antimicrobial potential of Caryota urens L. Free radic. antioxid., 3 107–112.
2 Rastogi A., Tripathi D. K., Yadav S., Chauhan D. K., Živˇcák M., Ghorbanpour M., El-Sheery N. I., and Brestic M. (2019) Application of Silicon Nanoparticles in Agriculture. 3 Biotech., 9 (3) 90.
3 Damian K. C., Roman J. J., Przemysław J. J., and Joanna L. (2017) Surface structure of cobalt, palladium, and mixed oxide-based catalysts and their activity in methane combustion studied by means of micro-Raman spectroscopy. J. Raman Spectrosc., 48 (12) 1871-1880.
4 Janaki A. C., Sailatha E., and Gunasekaran S. (2015) Synthesis, Characteristics and Antimicrobial Activity of ZnO Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 144 17–22.
5 Kaid M., Ali A., Shamsan A., Younes S., Abdel-Raheem S., Abdul-Malik M., and Salem W. (2022) Efficiency of maturation oxidation ponds as a post-treatment technique of wastewater. Curr. Chem. Lett., 11 (4) 415-422.
6 Mohamed S. K., Mague J. T., Akkurt M., Alfayomy A. M., Ragab F. A. F., and Abd Ul-Malik M. A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-fluoro-phen-yl)3-{[(4-meth-oxy-phen-yl)formamido]-imino}-7-methyl-2H,3H,5H-[1,3]thia-zolo[3,2-a]pyrimidine-6-carboxyl-ate 0.25-hydrate. Acta Crystallogr E Crystallogr Commun., 78 (9) 880-884.
7 Ahmeda A. A., Mohamed S. K., and Shaban A. A. (2022) Abdel-Raheemd Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm. Curr. Chem. Lett., 11 359–370.
8 Saleh T. A. (2020) Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov., 20 1–11.
9 Agarwal H., Venkat Kumar S., and Rajeshkumar S. (2017) A Review on Green Synthesis of Zinc Oxide Nanoparticles-An Eco-Friendly Approach. Resour. Effic. Technol., 3 406–413.
10 Thema F. T., Manikandan E., Dhlamini M. S., and Maaza M. (2015) Green Synthesis of ZnO Nanoparticles via Agathosma Betulina Natural Extract. Mater. Lett., 161 124–127.
11 Melk M. M., El-Hawary S. S., Melek F. R., Saleh D. O., Ali O. M., Raey M. A., and Selim N. M. (2021) Nano Zinc Oxide Green-Synthesized from Plumbago Auriculata Lam. Alcoholic Extract. Plants., 10 2447.
12 Ngoepe N. M., Mbita Z., Mathipa M., Mketo N., Ntsendwana B., and Hintsho-Mbita N. C. (2018) Biogenic Synthesis of ZnO Nanoparticles Using Monsonia Burkeana for Use in Photocatalytic, Antibacterial and Anticancer Applications. Ceram. Int., 44 16999–17006.
13 Balogun F.O., and Ashafa A. O. T. (2021) Potentials of Synthesised Lessertia Montana Zinc Oxide Nanoparticles on Free Radicals-Mediated Oxidative Stress and Carbohydrate- Hydrolysing Enzymes. Acta Biol. Szeged., 64 239–249.
14 Mahlaule-Glory L. M., Mbita Z., Ntsendwana B., Mathipa M. M., Mketo N., and Hintsho-Mbita N. C. (2019) ZnO Nanoparticles via Sutherlandia Frutescens Plant Extract: Physical and Biological Properties. Mater. Res. Express., 6 085006.
15 Mbenga Y., Mthiyane M. N., Botha T. L., Horn S., Pieters R., Wepener V., and Onwudiwe D. C. (2022) Nanoarchitectonics of ZnO Nanoparticles Mediated by Extract of Tulbaghia Violacea and Their Cytotoxicity Evaluation. J. Inorg. Organomet. Polym. Mater., 32 3249–3259.
16 Diallo A., Ngom B. D., Park E., and Maaza M. (2015) Green Synthesis of ZnO Nanoparticles by Aspalathus Linearis: Structural & Optical Properties. J. Alloy. Compd., 646 425–430.
17 Adeyemi J. O., Onwudiwe D. C., and Oyedeji A. O. (2022) Biogenic Synthesis of CuO, ZnO, and CuO–ZnO Nanoparticles Using Leaf Extracts of Dovyalis Caffra and Their Biological Properties. Molecules., 27 3206.
18 Adeyemi J. O., Elemike E. E., and Onwudiwe D. C. (2019) ZnO Nanoparticles Mediated by Aqueous Extracts of Dovyalis Caffra Fruits and the Photocatalytic Evaluations. Mater. Res. Express., 6 1–8.
19 Iravani S. (2011) Green Synthesis of Metal Nanoparticles Using Plants. Green Chem., 13 2638–2650.
20 Jodlowski P. J., Chlebda D, Piwowarczyk E, Chrzan M, Jedrzejcczyk R.J. Sitaez M, Wegrzynowicz A, Kolodziej A, and Lojewska J. (2016) In situ and operando spectroscopic studies of sonically aided catalysts for biogas exhaust abatement. J. Mol. Struct., 11 (26) 132-140.
21 Lojewska J., Knapik A., Jodlowski P., Lojewski T., Kolodziej A. (2013) Topography and morphology of multicomponent catalytic materials based on Co, Ce and Pd oxides deposited on metallic structured carriers studied by AFM/Raman interlaced microscopes. Catal. Today., 16 11-17.
22 Lwaniszyn M., Piatek M., Gancarczyk A., Jodlowski P. J., Lojewska J., and Kolodziej A. (2017) Flow resistance and heat transfer in short channels of metallic monoliths: Experiments versus CFD. Int. J. Heat Mass Transf., 109 778-785.
23 Jodlowski P.J., Damian K. C., Roman J. J., Anna D., Łukasz K., and Maciej S. (2018) Characterisation of well-adhered ZrO2 layers produced on structured reactors using the sonochemical sol–gel method. Appl. Surf. Sci., 563-574.
24 Chlebda D. K., Stachurska P., Jędrzejczyk R. J., Kuterasiński Ł., Dziedzicka A., Górecka S., Chmielarz L., Łojewska J., Sitarz M., and Jodłowski P. J. (2018) DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions. Nanomaterials., 8 21.
25 Mohammadi R., Aziz A., Yangjeh H., Bayrami A., Latifi S., and Asadollah N. (2018) Green Synthesis of ZnO and ZnO / CuO Nanocomposites in Mentha Longifolia Leaf Extract: Characterization and Their Application as Anti-Bacterial Agents. J. Mater. Sci. Mater. Electron., 29 13596–13605.
26 Roy S., and Rhim J. W. (2019) Carrageenan-Based Antimicrobial Bionanocomposite Films Incorporated with ZnO Nanoparticles Stabilized by Melanin. Food Hydrocoll., 90 500–507.
27 Gholami P., Dinpazhoh L., Khataee A., and Orooji Y. (2019) Sonocatalytic Activity of Biochar-Supported ZnO Nanorods in Degradation of Gemifloxacin: Synergy Study, Effect of Parameters and Phytotoxicity Evaluation. Ultrason. Sonochem., 55 44–56.
28 Dobrucka R. (2018) Antioxidant and Catalytic Activity of Biosynthesized CuO Nanoparticles Using Extract of Galeopsidis Herba. J. Inorg. Organomet. Polym. Mater., 28 812–819.
29 Chang Y.N., Zhang M., Xia L., Zhang J., and Xing G. (2012) The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials., 5 2850–2871.
30 Shukla A., and Dubey S. (2022) A Review: Traditionally Used Medicinal Plants Of Family Arecaceae With Phytoconstituents And Therapeutic Applications. Int. J. boil. Pharm. Allied sci., 11 (12) 5864-5877.
31 Sharma G., Kumar A., Sharma S., Naushad M., Dwivedi R. P., Alothman Z. A., and Mola G. T. (2019) Novel Development of Nanoparticles to Bimetallic Nanoparticles and Their Composites: A Review. J. King Saud Univ. Sci., 31 257–269.
32 Mohanraj S., Kodhaiyolii S., Rengasamy M., and Pugalenthi V. (2014) Green Synthesized Iron Oxide Nanoparticles Effect on Fermentative Hydrogen Production by Clostridium acetobutylicum. Appl. Biochem. Biotechnol., 173 318–331.
33 Ezealisiji K. M., Siwe-Noundou X., Maduelosi B., Nwachukwu N., and Krause R. W. M. (2019) Green Synthesis of Zinc Oxide Nanoparticles Using Solanum torvum (L) leaf Extract and Evaluation of the Toxicological Profile of the ZnO Nanoparticles–Hydrogel Composite in Wistar Albino Rats. Int. Nano Lett., 9 99–107.
34 Zengin G., Uysal S., Ceylan R., and Aktumsek A. (2015) Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Ind. Crops Prod., 70 1–6.
35 Pradeep P. M., and Sreerama Y. N. (2015) Impact of processing on the phenolic profiles of small millets: Evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chem., 169 455–463.
36 Blois M. S. (1998) Antioxidants determination by the use of a stable free radical. Nature., 4617 (181) 1199-1200.
37 Re R., Pellegrini N., Proteggente A., Pannala A. Yang M., and Rice E. C. (1999) Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free Radic. Biol. Med., 26 1231-1237.
38 Kazeem I. M., and Ashafa T. A. O. (2015) In vitro antioxidant and antidiabetic potentials of Dianthus basuticus Burtt Davy whole plant extracts. J. Herb. Med., 5 158-164.
39 Kim J. S., Yang J., and Kim M. J. (2011) Alpha glucosidase inhibitory effect, anti microbial activity and UPLC analysis of Rhus verniciflua under various extract conditions. J. Med. Plants Res., 5 778-783.
40 Arul Ananth D., Sivasudha T., Rameshkumar A., Jeyadevi R., and Aseervatham S. B. (2013) Chemical constituents, in vitro antioxidant and antimicrobial potential of Caryota urens L. Free radic. antioxid., 3 107–112.