How to cite this paper
Rhilassi, A., Oukkass, O & Bennani-Ziatni, M. (2023). Isotherms, kinetics, and thermodynamics of methionine adsorption onto poorly crystalline hydroxyapatite with different Ca/P ratios.Current Chemistry Letters, 12(4), 781-798.
Refrences
1 El Rhilassi A., Mourabet M., El Boujaady H., Bennani-Ziatni M., El Hamri R., and Taitai A. (2012) Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral. Appl. Surf. Sci., 259, 376– 384.
2 El Rhilassi A., Mourabet M., Bennani-Ziatni M., El Hamri R., and Taitai A. (2016) Interaction of some essential amino acids with synthesized poorly crystalline hydroxyapatite. J. Saudi Chem. Soc., 20, S632–S640.
3 El Rhilassi A. and Bennani-Ziatni M. (2022) Experimental study on the interaction of insulin with apatitic calcium phosphates analogous to bone mineral : adsorption and release. Curr. Chem. Lett., 11, 341–352.
4 El Rhilassi A., Mourabet M., El Boujaady H., Bennani Ziatni M., El Hamri R., and Taitai A. (2014) Adsorption of some essential amino acids and their mixture onto poorly crystalline hydroxyapatite. J. Mater. Environ. Sci., 5 (5) 1442–1453.
5 El Rhilassi A., and Bennani Ziatni B. (2023) Studies of kinetic models and adsorption isotherms : application on the interaction of insulin with synthetic hydroxyapatite. Curr. Chem. Lett., 12, 445–458.
6 Pon-On W., Charoenphandhu N., Tang I. M., Jongwattanapisan P., Krishnamra N., and Hoonsawat R. (2011) Encapsulation of magnetic CoFe2O4 in SiO2 nanocomposites using hydroxyapatite as templates : A drug delivery system. Mater. Chem. Phys.,131 (1– 2) 485–494.
7 Zhang C., Li C., Huang S., Hou Z., Cheng Z., Yang P., Peng C., and Lin J. (2010) Self– activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials, 31 (12) 3374–3383.
8 Rey C. (1998) Calcium phosphates for medical applications. In : Amjad Z editor. Calcium phosphates in biological and industrial systems. Boston : Kluwer Academic Publishers, 217–39.
9 Winand L. (1961) Etude physic-chimique du phosphate tricalcique hydrate et de l’hydroxyapatite. Annali di Chimica. 6, 941–967.
10 Lin J.H.C., Kuo K.H., Ding S.J., and Ju C. P. (2001) Surface reaction of stoichiometric and calcium-deficient Hydroxyapatite in simulated body fluid. J Mater Sci Mater Med.,12 (8) 731–741.
11 Li H., Gong M., Yang A., Ma J., Li X., and Yan Y. (2012) Degradable biocomposite of nano calcium deficient hydroxyapatite-multi (amino acid) copolymer. Int. J. Nanomed., 7, 1287–1295.
12 Suzuki O., Kamakura S., Katagiri T., Nakamura M., Zhao B., Honda Y., Kamijo R. (2006) Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomater., 27, 2671–2681.
13 Dorozhkin S.V. (2002) A review on the dissolution models of calcium apatites. Prog Cryst Growth
Charact., 44 (1) 45–61.
14 Rey, C., Hina, A., Tofighi, A., Glimcher, M.J. (1995) Maturation of poorly crystalline apatites : Chemical and structural aspects in vivo and in vitro. Cells Mater., 4–5, 345–356.
15 Dawson R.M.C., Elliott D.C., Elliott W.H., and Jones K.M., eds. (1969) Data for Biochemical Research, Oxford University Press., 436–465.
16 Weast., and Robert C., ed. (1981) CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL : CRC Press., C-374.
17 Pavia D. L., Lampman G. M., Kriz G. S., and Vyvyan, J. R. (2015) Introduction to Spectroscopy, 5th edition; Cengage Learning: Stamford, CT, ISBN-13: 978–1–285–46013–0.
18 Silverstein R. M, and Webster F. X. (1997) Spectrometric Identification of Organic Compounds, 6th Edn, John Wiley and Sons, Hoboken, 12-20.
19 Sears G.W. (1956) Determination of specific surface area of Colloidal silica by titration with sodium hydroxide, Anal. Chem., 28 (12) 1981 – 1983.
20 Noh J. S., and Schwarz J. A. (1989) Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Int Sci., 130 (1) 157–164.
21 Rey C. and Hina A. (1995) Surface reactivity of bone mineral crystals, a model for bioactive orthopaedic materials, bioceramics, 8, 55–60.
22 Destainville A., Champion E., and Bernache-Assollante D. (2003) Synthesis, characterization and thermal behaviour of apatite tricalcium phosphate, Mater. Chem. Phys., 80, 269 – 277.
23 Raynaud S., Champion E., Bernache-Assollant D., and Thomas P. (2002) Calcium phosphate apatite with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials, 23(4)1065-72.
24 Kwon S.H., Jun Y.K., Hong S.H., and Kim H. E. (2003) Synthesis and dissolution behaviour of β- TCP and HA/ β -TCP composite powders. J. Eur. Ceram. Soc., 23 (7) 1039-1045.
25 Lagergren S., and Svenska K. (1898) About of the theory of so - called adsorption of soluble substances. Vetenskapsakad Handl., 24 (2) 1–39.
26 Ho Y.S., and McKay G. (1999) Pseudo-second order model for sorption processes. Process Biochem., 34 (5) 451– 465.
27 Chien S.H. and Clayton W.R. (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J., 44, 265–268.
28 Weber W. J., and Morris J. C. (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 89 (SA2) 31– 40.
29 Langmuir I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40 (9) 1361–1403.
30 Freundlich H. M. F. (1906) Über die adsorption in lösungen. Z. Phys. Chem., 57, 385–470.
31 Temkin M. J., and Pyzhev V. (1940) Recent modifications to Langmuir Isotherms. Acta. Physicochimie USSR., 12, 217–222.
32 Dubinin M. M., and Radushkevich L. V. (1947) Equation of the Characteristic Curve of Activated Charcoal. J. Proc. Acad. Sci. USSR, Phys. Chem., 55, 331–333.
33 Weber T. W., and Chakravorti R. K. (1974) Pore and solid diffusion models for fixed-bed adsorbers. Am. Inst. Chem. Eng. J., 20 (2) 228–238.
34 Ho Y. S. (2006) Isotherms for the sorption of lead onto peat : Comparison of linear and non-linear methods. Pol. J. Environ. Stud., 15 (1) 81–86.
35 Jiang L., Li S., Yu H., Zou Z., Hou X., and Shen F. (2016) Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl. Surf. Sci., 369, 398– 413.
36 Yaday L.D.S. 1st edition (2005) Organic Spectroscopy. Professor Departement of Chemestry University of Allahabad Allahabad–211 002, India.
37 Ho Y.S. (2006) Isotherms for the sorption of lead onto peat : Comparison of linear and non-linear methods. P. J. Env. Studies 15, 81–86.
38 Al-Anber Z.A. and Matouq M.A.D. (2008) Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J. Hazard. Mater., 151, 194–201.
39 Jiang L., Li S., Yu H., Zou Z., Hou X., Shen F., Li C. and Yao X. (2016) Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl. Surf. Sci., 369, 398–413.
40 Singh T.S. and Pant K.K. (2004) Equilibrium, Kinetics and Thermodynamic Studies for Adsorption of As (III) on Activated Alumina. Sep. Pur. Technol., 36 (2) 139–147.