How to cite this paper
Sadowski, M., Utnicka, J., Wójtowicz, A & Kula, K. (2023). The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study.Current Chemistry Letters, 12(2), 421-430.
Refrences
1 Ram V. J., Sethi A., Nath M., and Pratap R. (2019) The Chemistry of Heterocycles: Nomenclature and Chemistry of Three to Five Membered Heterocycles. 1st Ed, Elsevier, Netherlands.
2 Siadati S. A. (2016) Beyond the alternatives that switch the mechanism of the 1,3-dipolar cycloadditions from concerted to stepwise or vice versa: a literature review. Prog. React. Kinet. Mech., 41 (4) 331-344.
3 Baranowski M., Dyksik M., and Płochocka P. (2022) 2D Metal Halide Perovskites: A New Fascinating Playground for Exciton Fine Structure Investigations. Sci. Rad., 1 3-25.
4 Kula K., Dresler E., Demchuk O. M., and Jasiński R. (2015) New aldimine N-oxides as precursors for preparation of heterocycles with potential biological activity. Przem. Chem., 94, 1385-1387.
5 Veerapur B., Netravati L., Naveenakumari H., and Basavaraja K. (2023) Design, synthesis, molecular docking and biological evaluation of some pyridinone bearing scaffold benzofuran as antimicrobial and antioxidant activity. Curr. Chem. Lett., 12 (1) 167-174.
6 Pandey G., Sharma P., Geedkar D., and Kumar A. (2023). One-pot strategy to synthesize seven–membered 1, 4-diazepine heterocyclic scaffolds assisted by zinc oxide nanoparticles as heterogeneous catalytic support system. Curr. Chem. Lett., 12 (1) 79-90.
7 Jasiński R., Mirosław B., Demchuk O. M., Babyuk D., and Łapczuk-Krygier A. (2016) In the search for experimental and quantumchemical evidence for zwitterionic nature of (2E)-3-[4-(dimethylamino) phenyl]-2-nitroprop-2-enenitrile - an extreme example of donor–π–acceptor push–pull molecule. J. Mol. Struct., 1108, 689-697.
8 Abdelhamid A., Elsaghiera A., Aref S., Gad M., Ahmed N., and Abdel-Raheem S. (2021) Preparation and biological activity evaluation of some benzoylthiourea and benzoylurea compounds. Curr. Chem. Lett., 10 (4) 371-376.
9 Abdel-Raheem S., El-Dean A., Abd-Ella A., Al-Taifi E., Hassanien R., El-Sayed M., Mohamed S., Zawam S., and Bakhit, E. (2021) A concise review on some synthetic routes and applications of pyridine scaffold compounds. Curr. Chem. Lett., 10 (4) 337-362.
10 Fryźlewicz A., Łapczuk-Krygier A., Kula K., Demchuk O. M., Dresler E., and Jasiński R. (2020) Regio- and stereoselective synthesis of nitrofunctionalized 1,2-oxazolidine analogs of nicotine. Chem. Heterocycl. Compd., 56 (1) 120-122.
11 Zawadzińska K., Ríos-Gutiérrez M., Kula K., Woliński P., Mirosław B., Krawczyk T., and Jasiński R. (2021) The participation of 3,3,3-trichloro-1-nitroprop-1-ene in the [3+2] cycloaddition reaction with selected nitrile N-oxides in the light of the experimental and MEDT quantum chemical study. Molecules, 26 (22) 6774.
12 Siadati S. A. (2015) An example of a stepwise mechanism for the catalyst-free 1,3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron Lett., 56 (34) 4857-4863.
13 Żmigrodzka M., Sadowski M., Kras J., Dresler E., Demchuk O. M., and Kula K. (2022) Polar [3+2] cycloaddition between N-methyl azomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene. Sci. Rad., 1 26-35.
14 Abd-Ella A., Metwally S., El-Ossaily Y., Elrazek F., Aref S., Naffea Y., and Abdel-Raheem S. (2022) A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives. Curr. Chem. Lett., 11 (2) 157-172.
15 Dhaduk M., and Joshi H. (2022) Synthesis, characterization and biological study of some new N-acetyl pyrazole derivatives. Curr. Chem. Lett., 11 (2) 199-206.
16 Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Łapczuk-Krygier A., Mirosław B., and Demchuk O. M. (2020) [3+2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct., 1203 127473.
17 Kula K., Kącka-Zych A., Łapczuk-Krygier A., Wzorek Z., Nowak A. K., and Jasiński R. (2021) Experimental and theoretical mechanistic study on the thermal decomposition of 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline. Molecules, 26 (5) 1364.
18 Scopus. Scopus preview. ; [Accessed 10.11.2022].
19 Prabhudeva M., Renuka N., and Kumar K. (2018) Synthesis of thiophene-pyrazole conjugates as potent antimicrobial and radical scavengers. Curr. Chem. Lett., 7 (3) 73-80.
20 Gupta S. L., Saini S., Saini P., Dandia A., Ameta K. L., and Parewa V. (2022) Pyrazoles, Indazoles and Pyrazolines: Recent Developments and Their Properties, in: Ameta K. L., Kant R., Penoni A., Maspero A., Scapinello L. (Eds) N-Heterocycles. Springer, Singapore, 415-441.
21 Faisal M., Saeed A., Hussain S., Dar P., and Larik F. A. (2019) Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. J. Chem. Sci., 131 (8) 1-30.
22 Lv Y., Meng J., Li C., Wang X., Ye Y., and Sun K. (2021) Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv. Synth. Catal., 363 (23) 5235-5265.
23 Łapczuk-Krygier A., Kącka-Zych A., and Kula K. (2019) Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Curr. Chem. Lett., 8 (1) 13-38.
24 Jasiński R. (2015) On the question of zwitterionic intermediates in 1,3-dipolar cycloadditions between hexafluoroacetone and sterically crowded diazocompounds. J. Fluor. Chem., 176, 35-39.
25 Ríos‐Gutiérrez M., and Domingo L. R. (2019) Unravelling the mysteries of the [3+ 2] cycloaddition reactions. Eur. J. Org. Chem., 2 267-282.
26 Siadati S. A., and Rezazadeh S. (2022) The extraordinary gravity of three atom 4π-components and 1,3-dienes to C20-nXn fullerenes; a new gate to the future of Nanotechnology. Sci. Rad., 1 46-68.
27 Jasiński R. (2020) On the question of the molecular mechanism of N-nitropyrazoles rearrangement. Chem. Heterocycl. Compd., 56 (9) 1210-1212.
28 Ono N. (2001) The nitro group in organic synthesis, 1st Ed, Wiley-VCH, Germany.
29 Jasiński R., Kula K., Kącka A. and Mirosław B. (2017) Unexpected course of reaction between (E)-2-aryl-1-cyano-1-nitroethenes and diazafluorene: why is there no 1,3-dipolar cycloaddition? Monats. Chem., 148 (5) 909-915.
30 Boguszewska-Czubara A., Kula K., Wnorowski A., Biernasiuk A., Popiołek Ł., Miodowski D., Demchuk O. M., and Jasiński R. (2019) Novel functionalized β-nitrostyrenes: Promising candidates for new antibacterial drugs. Saudi Pharm. J., 27 (4) 593-601.
31 Fryźlewicz A., Olszewska A., Zawadzińska K., Woliński P., Kula K., Kącka-Zych A., Łapczuk-Krygier A., and Jasiński R. (2022) On the Mechanism of the Synthesis of Nitrofunctionalised Δ2-Pyrazolines via [3+2] Cycloaddition Reactions between α-EWG-Activated Nitroethenes and Nitrylimine TAC Systems. Organics, 3 (1) 59-76.
32 Kula K., and Zawadzińska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Curr. Chem. Lett., 10 (1) 9-16.
33 Domingo L. R. (2016) Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules, 21 (10) 1319.
34 Domingo L. R., Ríos-Gutiérrez M., and Pérez P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules, 21 (6) 748.
35 Domingo L. R., Ríos-Gutiérrez M., and Castellanos-Soriano J. (2020) Understanding the Origin of the Regioselectivity in Non-Polar [3+2] Cycloaddition Reactions through the Molecular Electron Density Theory. Organics, 1 19-35.
36 Domingo L.R., and Ríos-Gutiérrez M., (2022) Application of Reactivity Indices in the Study of Polar Diels-Alder Reactions, in: Liu S. (Ed) Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory. Wiley-VCH, Germany, 481-502.
37 Lewars E. G. (2016) Computational Chemistry Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 3rd Ed, Springer, Netherlands.
38 Parr R. G., Szentpály L., and Liu S. (1999) Electrophilicity Index. J. Am. Chem. Soc., 121 1922-1924.
39 Pérez P., Domingo L. R., Duque-Noreña M., and Chamorro E. (2009) A condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions. J. Mol. Struct. (THEOCHEM), 895 (1-3) 86-91.
40 Domingo L. R., Kula K., Rios-Gutierrez M., and Jasinski R. (2021) Understanding the Participation of Fluorinated Azomethine Ylides in Carbenoid-Type [3+ 2] Cycloaddition Reactions with Ynal Systems: A Molecular Electron Density Theory Study. J. Org. Chem., 86 (18) 12644-12653.
41 Aurell M. J., Domingo L. R. Pérez P., and Contreras R. (2004) A theoretical study on the regioselectivity of 1,3-dipolar cycloadditions using DFT-based reactivity indexes. Tetrahedron, 60 11503-11509.
42 Kula K., Kącka-Zych A., Łapczuk-Krygier A., and Jasiński R. (2021) Analysis of the possibility and molecular mechanism of carbon dioxide consumption in the Diels-Alder processes. Pure Appl. Chem., 93 (4) 427-446.
43 Hansch C., Leo A., and Taft R. W. (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev., 91 (2) 165-195.
44 Domingo L. R., Perez P., and Saez J. A. (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv., 3 (5) 1486-1494.
45 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T. J., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima Y., Honda O., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas M. C., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., and Pople J. A. (2009) Gaussian 09 rev A.1 Gaussian Inc. Wallingford CT, USA.
46 Greelings P., De Proft F., and Langenaeker W. (2003) Conceptual Density Functional Theory. Chem. Rev., 103 (5) 1793-1874.
47 Zawadzińska K., and Kula K. (2021) Application of β-phosphorylated nitroethenes in [3+2] cycloaddition reactions involving benzonitrile N-oxide in the light of DFT computational study. Organics, 2 (1) 26-37.
48 Mlostoń G., Kula K., and Jasiński R. (2021) A DFT study on the molecular mechanism of additions of electrophilic and nucleophilic carbenes to non-enolizable cycloaliphatic thioketones. Molecules, 26 (18) 5562.
49 Kula K., and Łapczuk-Krygier A. (2018) A DFT computational study on the [3+2] cycloaddition between parent thionitrone and nitroethene. Curr. Chem. Lett., 7 (1) 27-34.
50 Demchuk O. M., Jasinski R., Strzelecka D., Dziuba K., Kula K., Chrzanowski J., and Krasowska, D. (2018) A clean and simple method for deprotection of phosphines from borane complexes. Pure Appl. Chem., 90 (1) 49-62.
51 Mlostoń G., Jasiński R., Kula K., and Heimgartner H. (2020) A DFT study on the Barton–Kellogg reaction–The molecular mechanism of the formation of thiiranes in the reaction between diphenyl-diazomethane and diaryl thioketones. Eur. J. Org. Chem., 2 176-182.
52 Perez P., Domingo L. R., Aurell M. J., and Contreras R. (2003) Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron, 59 (17) 3117-3125.
53 Dennington R., Keith T. A., and Millam. J. M. (2016) GaussView Version 6., Semichem Inc.: Shawnee Mission, KS, USA.