How to cite this paper
Emama, S., AbouEl-Enein, S., Othman, S & El-Mahdey, E. (2023). Novel metal chelates with thiourea and nicotinic acid: Synthesis, structural characterization, and biological properties.Current Chemistry Letters, 12(2), 317-334.
Refrences
1. Fazal A. E., Yu. Y. H., Rajhi A. Q., Ayed S. A., Mohammad Y. A., Alshehri M. A., Kamel A. S., Elbehairi S. E. I., Fawy K. F., and Abd-Rabboh H. S. M. (2016) Bioactivities of novel metal complexes involving B vitamins and glycine, Open Chem.,14, 287–298.
2. loyd-Jones D. M. (2014) Niacin and HDL cholesterol - time to face facts, N. Engl., J. Med. 371, 271–273.
3. Hussein M. M., Faham S. Y., and Alva A. K. (2014) Role of foliar application of nicotinic acid and tryptophan on onion plants response to salinity stress, J. Agric. Sci., 6, 41–51.
4. Kumar V. (2009) Synthesis and anticancer activity of pyrido[2,3-c]pyridazine derivatives, J. Sci. Islam. Repub. Iran, 20, 325–329.
5. Bhojak N. (2017) A review on coordination behavior and bioactivity of metal complexes of nicotinic acid and its derivatives, World J. Pharm. Pharm. Sci., 6, 490–514.
6. Paruch K., Biernasiuk A., Khylyuk D., Paduch R., Wujec M., and Popiołek Ł. (2022) Synthesis, biological activity and molecular docking studies of novel nicotinic acid derivatives, Int. J. Mol. Sci., 23, 2823-2845.
7. Amuthalakshmi S., Ramalakshmi N., Arunkumar S., and Prabakaran A. (2022) Design, Synthesis, docking, characterization and biological screening of novel azetidinone derivatives of nicotinic acid, Curr. Bioact. Compd., 18, 26-36.
8. Mohanram I., Meshram J., Kandpal B., Shaikh A., and Deshpande S., (2013) Synthesis of novel anti-inflammatory and antimicrobial agents via Ugi-4CR and its evaluation, J. Appl. Pharm. Sci., 3, 057-061.
9. Narang R., Narasimhan B., Sharma S., Sriram D., Yogeeswari P., Clercq E., Pannecouque C., and Balzarini J. (2012) Synthesis, antimycobacterial, antiviral, antimicrobial activities and QSAR studies of nicotinic acid benzylidene hydrazide derivatives, Med. Chem. Res., 21, 1557–1576.
10. Ma L., Zwahlen R. A., Zheng L.W. and Sham M. H. (2011) Influence of nicotine on the biological activity of rabbit osteoblasts, Clin. Oral Impl. Res., 22, 338-342.
11. Zalaa M., Voraa J. J., and Patel H. B. (2020) Synthesis, characterization, and comparative study of some heterocyclic compounds containing isoniazid and nicotinic acid hydrazide moieties, Russ. J. Org. Chem., 56, 1795–1800.
12. Jain N., Utreja D., and Dhillon N. K. (2019) A convenient one-pot synthesis and nematicidal activity of nicotinic acid amides, Russ. J. Org. Chem., 55, 845–851.
13. Damian D. L. (2017) Nicotinamide for skin cancer chemoprevention, Austr. J. Dermatol., 58, 174–180.
14. Bourgin M., Kepp O., and Kroemer G. (2022) Immunostimulatory effects of vitamin B5 improve anticancer immunotherapy, OncoImmunology,11(1), 203-209.
15. Smith G., and Wermuth U. D. (2010) Three-dimensional hydrogen-bonded structures in the 1:1 proton-transfer compounds of l-tartaric acid with the associative-group monosubstituted pyridines 3-amino-pyridine, 3-carboxy-pyridine (nicotinic acid) and 2-carboxy-pyridine (picolinic acid), Acta Crystallogr. C 66, 5-10.
16. Hasanin M., and Labeeb A. M. (2021). Dielectric properties of nicotinic acid/methylcellulose composite via “green” method for anti-static charge applications. Mater. Sci. Eng. C: B, 263, 114797-114806.
17. Alesary H. F., Ismail H. K., Odda A. H., Watkins M. J., Majhool A. A., Ballantyne. D., and Ryder K. S. (2021) Influence of different concentrations of nicotinic acid on the electrochemical fabrication of copper film from an ionic liquid based on the complexation of choline chloride-ethylene glycol. J. Electroanal. Chem., 897, 115581-115591.
18. Hosseinzadeh S. F., and Mokhtary, M., (2018). Application of nicotinic acid functionalized chlorosulfonic acid as a green catalyst for the synthesis of bis (2-methyl-1-indole) derivatives. J. Appl. Chem. Res.12(3), 31-41.
19. Li S., Li H., Cao X., and Chen C. (2013) Synthesis and bio-evaluation of novel salicylic acid-oriented thiourea derivatives with potential applications in agriculture, Lett. Drug Des. Discov., 11, 98–103.
20. Wahid A., Basra S. M. A., and Farooq M., (2017) Thiourea: A molecule with immense biological significance for plants, Int. J. Agric. Biol., 19, 911–920.
21. Min L.-J., Zhai Z.-W., Shi Y.-X., Han L., Tan C.-X., Weng J.-Q., Li B. J., Zhang Y.-G., and Liu X.-H., (2019) Synthesis and biological activity of acyl thiourea containing difluoromethyl pyrazole motif, Phosphorus Sulfur Silicon Relat. Elem.,195, 22-28.
22. Venkataramana L.R., Reddy A. V. K., Swetha V., Zyryanov G. V., and Raju C. N. (2022) Synthesis and bio-activity studies of urea/thiourea derivatives of 4,4’-diamino diphenyl methane, Conf. Proc., 2390, 85-96.
23. Kholodniak O., and Kovalenko S., (2022) Substituted acyl thioureas and acyl thiosemicarbazides: Synthesis and biological activity (minireview), Pharm. Sci., 2, 56-71.
24. Tok F., Cakir C., Cam D., Kirpat M.M., and Sicak Y. (2022) Synthesis, characterization and biological evaluation of novel thiourea derivatives, Clin. Exp. Health Sci., 12, 533-540.
25. Shoukat M.R., Leghari S.J., Ahmad N., Virk A.L., and Haider F. U. (2022) Effects of foliar applied thiourea on maize physiology, growth and yield (Zea mays L.) under shaded conditions, J. Plant Nutr., 45, 1312-1321.
26. Groenewald T., (1977). Potential applications of thiourea in the processing of gold J. South Afr. Inst. Min. Metall., 77(11), 217-223.
27. Loto R. T., Loto C. A. and Popoola A. P. I. (2012). Corrosion inhibition of thiourea and thiadiazole derivatives: a review, J. Mater. Environ. Sci., 3(5), 885-894.
28. Shahid M., Shukla A. K., Bhattacharyya P., Tripathi R., Mohanty S., Kumar A., Lal B., Gautam P., Raja R., Panda B. B., Das B., and Nayak A. K. (2016) Micronutrients (Fe, Mn, Zn, and Cu) balance under long-term application of fertilizer and manure in a tropical rice-rice system, J. Soils Sediments, 16(3), 737–747.
29. Snowball K., and Robson A. D. (1991) Nutrient Deficiencies and Toxicities in Wheat: A Guide for Field Identification, Nutr. Defic. Toxicities Wheat,1-76.
30. El-Megharbel S. M., Refat M. S., Al-Salmi F. A., and Hamza R. Z., (2021). In Situ neutral system synthesis, spectroscopic, and biological interpretations of magnesium(II), calcium(II), chromium(III), zinc(II), copper(II), and selenium(IV) sitagliptin complexes. Int. J. Environ. Res. Public Health, 18, 1-19.
31. Billet K., Malinowska M. A., Munsch T., Unlubayir M., Adler S., Delanoue G., and Lanoue A. (2020) Semi-targeted metabolomics to validate biomarkers of grape downy mildew infection under field conditions, Plants, 9(9) , 1008-1025.
32. Billet K., Unlubayir M., Munsch T., Malinowska M. A., Bernonville T. D., Oudin A., Courdavault V., Besseau S., Giglioli-Guivarc’h N., and Lanoue A.(2021), ACS Sustain. Chem. Eng., 9(8) , 3509-3517.
33. Bassett J., Denney R. C., Jeffery G. H., and Mendham J. (1978) Vogel's Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th ed. Longman Group, London.
34. Lewis J., and Wilkins R. G. (1960) Modern Coordination Chemistry, Principles and Methods, Interscience New York, 403.
35. Elsayed Y., and Shabana Y. (2018) The effect of some essential oils on Aspergillus niger and Alternaria alternata infestation in archaeological oil paintings, Mediterr. Archaeol. Archaeon, 18, 71–87.
36. Shawki K., Elsayed A., Abido W., and Shabana Y. (2020) Using green chemicals and biological control agents for controlling the Seed-Borne Pathogen Fusarium moniliforme in Sugar Beet, J. Plant Prot. Pathol., 11, 63–72.
37. Yuen S. H., and Pollard A. G. (1953) Determination of nitrogen in the soil and plant materials: Use of boric acid in the micro‐Kjeldahl method, J. Sci. Food Agric., 4, 490–496.
38. Geary W. J. (1971) The use of conductivity measurements in organic solvents for the coordination compounds, Coord. Chem. Rev., 7, 81-122.
39. Abouzayed F. I., Emam S. M., and Abuel-Enein S. A. (2020) Synthesis, characterization and biological activity of nano-sized Co(II), Ni(II), Cu(II), Pd(II) and Ru(III) complexes of tetradentate hydrazine ligand, J. Mol. Struct., 1216, 128314 -128326.
40. Sanina N. A., Aldoshin S.M., Shmatko N. Y., Korchagin D. V., Shilov G. V., Ovanesyan N. S., and Kulikov A. V. (2014) Mesomeric tautomerism of ligand is a novel pathway for synthesis of cationic dinitrosyl iron complexes: X-ray structure and properties of nitrosyl complex with thiourea, Inorg. Chem. Commun., 49, 44–47.
41. Stewart J. E. (1957) Infrared absorption spectra of urea, thiourea and some thiourea-alkali halide complexes, J. Chem. Phys., 26, 248-254.
42. Struktur K., Siri S., and Pivaloiltiourea T. (2011) Spectroscopic and structural study of a series of pivaloylthiourea derivatives, Malaysian J. Anal. Sci., 15, 37–45.
43. Ragamathunnisa R. N., Rani J. V., Padmavathy R., and Radha N. (2013) Spectroscopic study on thiourea and thiosemicarbazide in nonaqueous media, IOSR J. Appl. Phys., 4, 5–08.
44. Emam S.M. (2017) Spectral characterization, thermal and biological activity studies of Schiff base complexes derived from 4,4′-methylenedianiline, ethanol amine and benzyl, J. Mol. Struct., 1134, 444-457.
45. Rao C. N. R., Venkataraghavan R., and Kasturi T. R. (1964) Contribution to the infrared spectra of organosulfur compounds, Can. J. Chem., 42, 36–42.
46. Gadag R. V., and Gajendragad M. R. (1978) Complexes of Cu(I), Ag(I), Ti(I), Zn(I), and Cd(II) with 3-methyl,3-ethyl derivatives of 4-amino-5-mercapto-1,2,4-triazole, Indian J. Chem., 16A, 703–705.
47. Cinarli A., Gürbüz D., Tavman A., and Birteksöz A. (2011) Synthesis, spectral characterizations and antimicrobial activity of some Schiff bases of 4-chloro-2- aminophenol, Bull. Chem. Soc., 25, 407–417.
48. Hassan A. M., Elbialy Z. I., and Wahdan K. M. (2020) Study of antioxidant and anticorrosion activity of some microwave synthesized thiourea derivative ligands and complexes, Sch. Int. J. Chem. Mater. Sci., 3, 83-98.
49. Emam S. M., Abou El-Enein S. A., and Emara E. M. (2017) Spectroscopic studies and thermal decomposition for (bis-((E)-2-(4-ethylphenylimino)-1,2-diphenylethanone) Schiff base and its Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes prepared by direct and template reactions, J. Therm. Anal. Calorim., 127, 1611–1630.
50. Refat M.S., Altalhi T., and Hassan R. F. (2021) Synthesis, spectroscopic, structural and morphological characterizations of magnesium(II), calcium(II), strontium(II) and barium(II) folate complexes, J. Mol. Struct., 1227, 519-524.
51. El Metwally N. M., Arafa R., and El-Ayaan U. (2014) Molecular modeling, spectral, and biological studies of 4-formylpyridine-4-N-(2-pyridyl)thiosemicarbazone (HFPTS) and its Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Cd(II), Hg(II), and UO2(II) complexes, J. Therm. Anal. Calorim., 115, 2357–2367.
52. Ikram M., Rehman S., Islam N. U., and Jan N. (2011) Synthesis and characterization of Ni(II), Cu(II) and Zn(II) tetrahedral transition metal complexes of modified hydrazine, J. Mex. Chem. Soc., 55, 164–167.
53. Alzamil N. O. (2020) Synthesis, DFT calculation, DNA-binding, antimicrobial, cytotoxic and molecular docking studies on new complexes VO(II), Fe(III), Co(II), Ni(II) and Cu(II) of pyridine Schiff base ligand, Mater. Res. Express, 7, 401-419.
54. Emam S. M., El-Tabl A. S., Ahmed H. M., and Emad E. A. (2014) Synthesis, structural characterization, electrochemical and biological studies on divalent metal chelates of a new ligand derived from pharmaceutical preservative, dehydroacetic acid, with 1,4-diaminobenzene, Arab. J. Chem., 16(S2), S3816–S3825.
55. Emam S. M., El Sayed I. E. T., and Nassar N. (2015) Transition metal complexes of neocryptolepine analogs. Part I: Synthesis, spectroscopic characterization, and in vitro anticancer activity of copper (II) complexes, Spectrochim. Acta A 138, 942–953.
56. El-Samanody E. S. A., Emam S. M., and Emara E. M. (2017) Synthesis, characterization, molecular modeling and biological activity of metal complexes derived from (E)-N’-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide, J. Mol. Struct., 1146, 868–880.
57. Emam S. M., Abouel-Enein S. A., and Abdel-Satar E. M. (2019) Structural characterization, thermal investigation and biological activity of metal complexes containing Schiff Base ligand (Z)-3-(1-((4,6-dimethyl-1H-pyrazolo[3,4-b] pyridine-3-yl)imino)ethyl)-4-hydroxy-6-methyl-2H-pyran-2-one, Appl. Organomet. Chem., 33, e4847– e4871.
58. Emam S. M., Abouel-Enein S. A., El-Saied F. A., and Alshater S. Y. (2012) Synthesis and characterization of some bi, tri and tetravalent transition metal complexes of N′-(furan-2-yl-methylene)-2-(p-tolylamino acetohydrazide HL1 andN′-(thiophen-2-yl-methylene)-2-(p-tolylamino)acetohydrazideHL2, Spectrochim. Acta A 92, 96–104.
59. Ramadan A. M., Alshehri A. A., and Bondock S. (2019) Synthesis, physicochemical studies and biological evaluation of new metal complexes with some pyrazolone derivatives, J. Saudi. Chem. Soc., 23, 1192–1205.
60. Gonc E. M., Bernardes C. E. S., Diogo P., and Minas M. E. (2010) Energetics and structure of nicotinic acid (Niacin), J. Phys. Chem. B, 114, 5475–5485.
61. Al-Qadsy I., Al-Odayni A.B., Saeed W. S., Alrabie A., Al-Adhreai A., Al-Faqeeh L. A. S., Lama P., Alghamdi A. A., and Farooqui M. (2021) Synthesis, characterization, single-crystal x-ray structure and biological activities of [(Z)-N’-(4-methoxybenzylidene)benzohydrazide–nickel(II)] complex, Crystals 11, 110-115.
62. Emam S. M., Tolan D. A., and El-Nahas A. M. (2020) Synthesis, structural, spectroscopic, and thermal studies of some transition-metal complexes of a ligand containing the amino mercapto triazole moiety, Appl. Organomet. Chem., 34, 1–26.
63. Momo P. B., Leveille A. N., E. Farrar H. E., Grayson M. N., Mattson A. E., and Burtoloso A. C. B. (2020) Enantioselective S−H insertion reactions of α-carbonyl sulfoxonium ylides, Angew. Chem. Int., 132, 15684-15689.
64. Abdel M. S., Ghorab M. M., Alsaid M. S., and Alqasoumi S. I.,Design, (2016) Synthesis and anticancer evaluation of some novel thiourea, carbamimidothioic acid, oxazole, oxazolidine and 2-amino-1-phenylpropy-2-chloroacetate derived from L norephedrine, Russ. J. Bioorg. Chem., 42, 434–440.
65. Piloyan G. O., Ryabchikov I. D., and Novikova O. S. (1966) Determination of activation energies of chemical reactions by differential thermal analysis, Nature 212, 1229-1229.
66. Melling R., Wilburn F. W., and Mcintosh R. M. (1969) Study of thermal effects observed by differential thermal analysis: Theory and its application to influence of sample parameters on a typical DTA curve, Anal. Chem., 41, 1275–1286.
67. Alaghaz A. M. A., Zayed M. E., Alharbi S.A., and Ammar R.A.A. (2015) Synthesis, spectroscopic identification, thermal, potentiometric and antibacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff’s base complexes, J. Mol. Struct., 1087, 60-67.
68. Gaber A., Refat M. S., Belal A.A.M., El-Deen M., Hassan N., Zakaria R., Alhomrani M., Alamri A., Alsanie W. F., and Saied E. M. (2021) New mononuclear and binuclear Cu(II), Co(II), Ni(II), and Zn(II) thiosemicarbazone complexes with potential biological activity: antimicrobial and molecular docking study, Molecules 26, 2288-2305.
69. El-Nahass M. N., Bakr E. A., El-Gamil M. M., and Ibrahim S. A. (2022) Synthesis, characterization, and multifunctional applications of novel metal complexes based on thiazolylazo dye, Appl. Organomet. Chem., 36, 6625-6651.
70. Negm N.A., Zaki M.F., and Salem M.A.I. (2010) Cationic Schiff base amphiphiles and their metal complexes: Surface and biocidal activities against bacteria and fungi, Colloids Surf. B: Biointerfaces, 77, 96–103.
2. loyd-Jones D. M. (2014) Niacin and HDL cholesterol - time to face facts, N. Engl., J. Med. 371, 271–273.
3. Hussein M. M., Faham S. Y., and Alva A. K. (2014) Role of foliar application of nicotinic acid and tryptophan on onion plants response to salinity stress, J. Agric. Sci., 6, 41–51.
4. Kumar V. (2009) Synthesis and anticancer activity of pyrido[2,3-c]pyridazine derivatives, J. Sci. Islam. Repub. Iran, 20, 325–329.
5. Bhojak N. (2017) A review on coordination behavior and bioactivity of metal complexes of nicotinic acid and its derivatives, World J. Pharm. Pharm. Sci., 6, 490–514.
6. Paruch K., Biernasiuk A., Khylyuk D., Paduch R., Wujec M., and Popiołek Ł. (2022) Synthesis, biological activity and molecular docking studies of novel nicotinic acid derivatives, Int. J. Mol. Sci., 23, 2823-2845.
7. Amuthalakshmi S., Ramalakshmi N., Arunkumar S., and Prabakaran A. (2022) Design, Synthesis, docking, characterization and biological screening of novel azetidinone derivatives of nicotinic acid, Curr. Bioact. Compd., 18, 26-36.
8. Mohanram I., Meshram J., Kandpal B., Shaikh A., and Deshpande S., (2013) Synthesis of novel anti-inflammatory and antimicrobial agents via Ugi-4CR and its evaluation, J. Appl. Pharm. Sci., 3, 057-061.
9. Narang R., Narasimhan B., Sharma S., Sriram D., Yogeeswari P., Clercq E., Pannecouque C., and Balzarini J. (2012) Synthesis, antimycobacterial, antiviral, antimicrobial activities and QSAR studies of nicotinic acid benzylidene hydrazide derivatives, Med. Chem. Res., 21, 1557–1576.
10. Ma L., Zwahlen R. A., Zheng L.W. and Sham M. H. (2011) Influence of nicotine on the biological activity of rabbit osteoblasts, Clin. Oral Impl. Res., 22, 338-342.
11. Zalaa M., Voraa J. J., and Patel H. B. (2020) Synthesis, characterization, and comparative study of some heterocyclic compounds containing isoniazid and nicotinic acid hydrazide moieties, Russ. J. Org. Chem., 56, 1795–1800.
12. Jain N., Utreja D., and Dhillon N. K. (2019) A convenient one-pot synthesis and nematicidal activity of nicotinic acid amides, Russ. J. Org. Chem., 55, 845–851.
13. Damian D. L. (2017) Nicotinamide for skin cancer chemoprevention, Austr. J. Dermatol., 58, 174–180.
14. Bourgin M., Kepp O., and Kroemer G. (2022) Immunostimulatory effects of vitamin B5 improve anticancer immunotherapy, OncoImmunology,11(1), 203-209.
15. Smith G., and Wermuth U. D. (2010) Three-dimensional hydrogen-bonded structures in the 1:1 proton-transfer compounds of l-tartaric acid with the associative-group monosubstituted pyridines 3-amino-pyridine, 3-carboxy-pyridine (nicotinic acid) and 2-carboxy-pyridine (picolinic acid), Acta Crystallogr. C 66, 5-10.
16. Hasanin M., and Labeeb A. M. (2021). Dielectric properties of nicotinic acid/methylcellulose composite via “green” method for anti-static charge applications. Mater. Sci. Eng. C: B, 263, 114797-114806.
17. Alesary H. F., Ismail H. K., Odda A. H., Watkins M. J., Majhool A. A., Ballantyne. D., and Ryder K. S. (2021) Influence of different concentrations of nicotinic acid on the electrochemical fabrication of copper film from an ionic liquid based on the complexation of choline chloride-ethylene glycol. J. Electroanal. Chem., 897, 115581-115591.
18. Hosseinzadeh S. F., and Mokhtary, M., (2018). Application of nicotinic acid functionalized chlorosulfonic acid as a green catalyst for the synthesis of bis (2-methyl-1-indole) derivatives. J. Appl. Chem. Res.12(3), 31-41.
19. Li S., Li H., Cao X., and Chen C. (2013) Synthesis and bio-evaluation of novel salicylic acid-oriented thiourea derivatives with potential applications in agriculture, Lett. Drug Des. Discov., 11, 98–103.
20. Wahid A., Basra S. M. A., and Farooq M., (2017) Thiourea: A molecule with immense biological significance for plants, Int. J. Agric. Biol., 19, 911–920.
21. Min L.-J., Zhai Z.-W., Shi Y.-X., Han L., Tan C.-X., Weng J.-Q., Li B. J., Zhang Y.-G., and Liu X.-H., (2019) Synthesis and biological activity of acyl thiourea containing difluoromethyl pyrazole motif, Phosphorus Sulfur Silicon Relat. Elem.,195, 22-28.
22. Venkataramana L.R., Reddy A. V. K., Swetha V., Zyryanov G. V., and Raju C. N. (2022) Synthesis and bio-activity studies of urea/thiourea derivatives of 4,4’-diamino diphenyl methane, Conf. Proc., 2390, 85-96.
23. Kholodniak O., and Kovalenko S., (2022) Substituted acyl thioureas and acyl thiosemicarbazides: Synthesis and biological activity (minireview), Pharm. Sci., 2, 56-71.
24. Tok F., Cakir C., Cam D., Kirpat M.M., and Sicak Y. (2022) Synthesis, characterization and biological evaluation of novel thiourea derivatives, Clin. Exp. Health Sci., 12, 533-540.
25. Shoukat M.R., Leghari S.J., Ahmad N., Virk A.L., and Haider F. U. (2022) Effects of foliar applied thiourea on maize physiology, growth and yield (Zea mays L.) under shaded conditions, J. Plant Nutr., 45, 1312-1321.
26. Groenewald T., (1977). Potential applications of thiourea in the processing of gold J. South Afr. Inst. Min. Metall., 77(11), 217-223.
27. Loto R. T., Loto C. A. and Popoola A. P. I. (2012). Corrosion inhibition of thiourea and thiadiazole derivatives: a review, J. Mater. Environ. Sci., 3(5), 885-894.
28. Shahid M., Shukla A. K., Bhattacharyya P., Tripathi R., Mohanty S., Kumar A., Lal B., Gautam P., Raja R., Panda B. B., Das B., and Nayak A. K. (2016) Micronutrients (Fe, Mn, Zn, and Cu) balance under long-term application of fertilizer and manure in a tropical rice-rice system, J. Soils Sediments, 16(3), 737–747.
29. Snowball K., and Robson A. D. (1991) Nutrient Deficiencies and Toxicities in Wheat: A Guide for Field Identification, Nutr. Defic. Toxicities Wheat,1-76.
30. El-Megharbel S. M., Refat M. S., Al-Salmi F. A., and Hamza R. Z., (2021). In Situ neutral system synthesis, spectroscopic, and biological interpretations of magnesium(II), calcium(II), chromium(III), zinc(II), copper(II), and selenium(IV) sitagliptin complexes. Int. J. Environ. Res. Public Health, 18, 1-19.
31. Billet K., Malinowska M. A., Munsch T., Unlubayir M., Adler S., Delanoue G., and Lanoue A. (2020) Semi-targeted metabolomics to validate biomarkers of grape downy mildew infection under field conditions, Plants, 9(9) , 1008-1025.
32. Billet K., Unlubayir M., Munsch T., Malinowska M. A., Bernonville T. D., Oudin A., Courdavault V., Besseau S., Giglioli-Guivarc’h N., and Lanoue A.(2021), ACS Sustain. Chem. Eng., 9(8) , 3509-3517.
33. Bassett J., Denney R. C., Jeffery G. H., and Mendham J. (1978) Vogel's Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th ed. Longman Group, London.
34. Lewis J., and Wilkins R. G. (1960) Modern Coordination Chemistry, Principles and Methods, Interscience New York, 403.
35. Elsayed Y., and Shabana Y. (2018) The effect of some essential oils on Aspergillus niger and Alternaria alternata infestation in archaeological oil paintings, Mediterr. Archaeol. Archaeon, 18, 71–87.
36. Shawki K., Elsayed A., Abido W., and Shabana Y. (2020) Using green chemicals and biological control agents for controlling the Seed-Borne Pathogen Fusarium moniliforme in Sugar Beet, J. Plant Prot. Pathol., 11, 63–72.
37. Yuen S. H., and Pollard A. G. (1953) Determination of nitrogen in the soil and plant materials: Use of boric acid in the micro‐Kjeldahl method, J. Sci. Food Agric., 4, 490–496.
38. Geary W. J. (1971) The use of conductivity measurements in organic solvents for the coordination compounds, Coord. Chem. Rev., 7, 81-122.
39. Abouzayed F. I., Emam S. M., and Abuel-Enein S. A. (2020) Synthesis, characterization and biological activity of nano-sized Co(II), Ni(II), Cu(II), Pd(II) and Ru(III) complexes of tetradentate hydrazine ligand, J. Mol. Struct., 1216, 128314 -128326.
40. Sanina N. A., Aldoshin S.M., Shmatko N. Y., Korchagin D. V., Shilov G. V., Ovanesyan N. S., and Kulikov A. V. (2014) Mesomeric tautomerism of ligand is a novel pathway for synthesis of cationic dinitrosyl iron complexes: X-ray structure and properties of nitrosyl complex with thiourea, Inorg. Chem. Commun., 49, 44–47.
41. Stewart J. E. (1957) Infrared absorption spectra of urea, thiourea and some thiourea-alkali halide complexes, J. Chem. Phys., 26, 248-254.
42. Struktur K., Siri S., and Pivaloiltiourea T. (2011) Spectroscopic and structural study of a series of pivaloylthiourea derivatives, Malaysian J. Anal. Sci., 15, 37–45.
43. Ragamathunnisa R. N., Rani J. V., Padmavathy R., and Radha N. (2013) Spectroscopic study on thiourea and thiosemicarbazide in nonaqueous media, IOSR J. Appl. Phys., 4, 5–08.
44. Emam S.M. (2017) Spectral characterization, thermal and biological activity studies of Schiff base complexes derived from 4,4′-methylenedianiline, ethanol amine and benzyl, J. Mol. Struct., 1134, 444-457.
45. Rao C. N. R., Venkataraghavan R., and Kasturi T. R. (1964) Contribution to the infrared spectra of organosulfur compounds, Can. J. Chem., 42, 36–42.
46. Gadag R. V., and Gajendragad M. R. (1978) Complexes of Cu(I), Ag(I), Ti(I), Zn(I), and Cd(II) with 3-methyl,3-ethyl derivatives of 4-amino-5-mercapto-1,2,4-triazole, Indian J. Chem., 16A, 703–705.
47. Cinarli A., Gürbüz D., Tavman A., and Birteksöz A. (2011) Synthesis, spectral characterizations and antimicrobial activity of some Schiff bases of 4-chloro-2- aminophenol, Bull. Chem. Soc., 25, 407–417.
48. Hassan A. M., Elbialy Z. I., and Wahdan K. M. (2020) Study of antioxidant and anticorrosion activity of some microwave synthesized thiourea derivative ligands and complexes, Sch. Int. J. Chem. Mater. Sci., 3, 83-98.
49. Emam S. M., Abou El-Enein S. A., and Emara E. M. (2017) Spectroscopic studies and thermal decomposition for (bis-((E)-2-(4-ethylphenylimino)-1,2-diphenylethanone) Schiff base and its Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes prepared by direct and template reactions, J. Therm. Anal. Calorim., 127, 1611–1630.
50. Refat M.S., Altalhi T., and Hassan R. F. (2021) Synthesis, spectroscopic, structural and morphological characterizations of magnesium(II), calcium(II), strontium(II) and barium(II) folate complexes, J. Mol. Struct., 1227, 519-524.
51. El Metwally N. M., Arafa R., and El-Ayaan U. (2014) Molecular modeling, spectral, and biological studies of 4-formylpyridine-4-N-(2-pyridyl)thiosemicarbazone (HFPTS) and its Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Cd(II), Hg(II), and UO2(II) complexes, J. Therm. Anal. Calorim., 115, 2357–2367.
52. Ikram M., Rehman S., Islam N. U., and Jan N. (2011) Synthesis and characterization of Ni(II), Cu(II) and Zn(II) tetrahedral transition metal complexes of modified hydrazine, J. Mex. Chem. Soc., 55, 164–167.
53. Alzamil N. O. (2020) Synthesis, DFT calculation, DNA-binding, antimicrobial, cytotoxic and molecular docking studies on new complexes VO(II), Fe(III), Co(II), Ni(II) and Cu(II) of pyridine Schiff base ligand, Mater. Res. Express, 7, 401-419.
54. Emam S. M., El-Tabl A. S., Ahmed H. M., and Emad E. A. (2014) Synthesis, structural characterization, electrochemical and biological studies on divalent metal chelates of a new ligand derived from pharmaceutical preservative, dehydroacetic acid, with 1,4-diaminobenzene, Arab. J. Chem., 16(S2), S3816–S3825.
55. Emam S. M., El Sayed I. E. T., and Nassar N. (2015) Transition metal complexes of neocryptolepine analogs. Part I: Synthesis, spectroscopic characterization, and in vitro anticancer activity of copper (II) complexes, Spectrochim. Acta A 138, 942–953.
56. El-Samanody E. S. A., Emam S. M., and Emara E. M. (2017) Synthesis, characterization, molecular modeling and biological activity of metal complexes derived from (E)-N’-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide, J. Mol. Struct., 1146, 868–880.
57. Emam S. M., Abouel-Enein S. A., and Abdel-Satar E. M. (2019) Structural characterization, thermal investigation and biological activity of metal complexes containing Schiff Base ligand (Z)-3-(1-((4,6-dimethyl-1H-pyrazolo[3,4-b] pyridine-3-yl)imino)ethyl)-4-hydroxy-6-methyl-2H-pyran-2-one, Appl. Organomet. Chem., 33, e4847– e4871.
58. Emam S. M., Abouel-Enein S. A., El-Saied F. A., and Alshater S. Y. (2012) Synthesis and characterization of some bi, tri and tetravalent transition metal complexes of N′-(furan-2-yl-methylene)-2-(p-tolylamino acetohydrazide HL1 andN′-(thiophen-2-yl-methylene)-2-(p-tolylamino)acetohydrazideHL2, Spectrochim. Acta A 92, 96–104.
59. Ramadan A. M., Alshehri A. A., and Bondock S. (2019) Synthesis, physicochemical studies and biological evaluation of new metal complexes with some pyrazolone derivatives, J. Saudi. Chem. Soc., 23, 1192–1205.
60. Gonc E. M., Bernardes C. E. S., Diogo P., and Minas M. E. (2010) Energetics and structure of nicotinic acid (Niacin), J. Phys. Chem. B, 114, 5475–5485.
61. Al-Qadsy I., Al-Odayni A.B., Saeed W. S., Alrabie A., Al-Adhreai A., Al-Faqeeh L. A. S., Lama P., Alghamdi A. A., and Farooqui M. (2021) Synthesis, characterization, single-crystal x-ray structure and biological activities of [(Z)-N’-(4-methoxybenzylidene)benzohydrazide–nickel(II)] complex, Crystals 11, 110-115.
62. Emam S. M., Tolan D. A., and El-Nahas A. M. (2020) Synthesis, structural, spectroscopic, and thermal studies of some transition-metal complexes of a ligand containing the amino mercapto triazole moiety, Appl. Organomet. Chem., 34, 1–26.
63. Momo P. B., Leveille A. N., E. Farrar H. E., Grayson M. N., Mattson A. E., and Burtoloso A. C. B. (2020) Enantioselective S−H insertion reactions of α-carbonyl sulfoxonium ylides, Angew. Chem. Int., 132, 15684-15689.
64. Abdel M. S., Ghorab M. M., Alsaid M. S., and Alqasoumi S. I.,Design, (2016) Synthesis and anticancer evaluation of some novel thiourea, carbamimidothioic acid, oxazole, oxazolidine and 2-amino-1-phenylpropy-2-chloroacetate derived from L norephedrine, Russ. J. Bioorg. Chem., 42, 434–440.
65. Piloyan G. O., Ryabchikov I. D., and Novikova O. S. (1966) Determination of activation energies of chemical reactions by differential thermal analysis, Nature 212, 1229-1229.
66. Melling R., Wilburn F. W., and Mcintosh R. M. (1969) Study of thermal effects observed by differential thermal analysis: Theory and its application to influence of sample parameters on a typical DTA curve, Anal. Chem., 41, 1275–1286.
67. Alaghaz A. M. A., Zayed M. E., Alharbi S.A., and Ammar R.A.A. (2015) Synthesis, spectroscopic identification, thermal, potentiometric and antibacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff’s base complexes, J. Mol. Struct., 1087, 60-67.
68. Gaber A., Refat M. S., Belal A.A.M., El-Deen M., Hassan N., Zakaria R., Alhomrani M., Alamri A., Alsanie W. F., and Saied E. M. (2021) New mononuclear and binuclear Cu(II), Co(II), Ni(II), and Zn(II) thiosemicarbazone complexes with potential biological activity: antimicrobial and molecular docking study, Molecules 26, 2288-2305.
69. El-Nahass M. N., Bakr E. A., El-Gamil M. M., and Ibrahim S. A. (2022) Synthesis, characterization, and multifunctional applications of novel metal complexes based on thiazolylazo dye, Appl. Organomet. Chem., 36, 6625-6651.
70. Negm N.A., Zaki M.F., and Salem M.A.I. (2010) Cationic Schiff base amphiphiles and their metal complexes: Surface and biocidal activities against bacteria and fungi, Colloids Surf. B: Biointerfaces, 77, 96–103.