How to cite this paper
Ibrahim, I., El-Dreny, E & Salih, H. (2023). The effect of different treatments on the accumulation of histamine in herring and fesikh.Current Chemistry Letters, 12(1), 217-226.
Refrences
1 Comas-Basté O., Sánchez-Pérez S., Veciana-Nogués M. T., Latorre-Moratalla M. L., and Vidal-Carou M. C. (2020) Histamine intolerance: The current state of the art. Biomolec., 10 (8) 1181.
2 FAO / WHO (2012) joint FAO/WHO expert meeting on the public health risks of histamine and other biogenic amines from fish and fishery products FAO headquarters, Rome, Italy Meeting Report.
3 Knope K. E., Sloan-Gardner T. S., and Stafford R.J. (2014) Histamine fish poisoning in Australia, 2001 to 2013 .Commun. Dis. Intell. Q. Rep., 38, E285-E293.
4 Benkerroum N. (2016) Biogenic amines in dairy products: Origin, incidence, and control means. Compr. Rev. Food Sci. Food Saf., 15, 801-826.
5 FAO/WHO. (2013) Public health risks of histamine and other biogenic amines from fish and fishery products. Meeting report (9789251078495).
6 Yuan Y., Granger H. J., Zawieja D. C., DeFily D. V., and Chilian W. M. (1993) Histamine increases venular permeability via a phospholipase C-NO synthaseguanylate cyclase cascade. Am. J. Physiol., 264: H1734-H1739.
7 FDA (2011) Fish and fisheries products hazards and controls guide (4th Ed.). Washington, DC: Office of Seafood, Food and Drug Administration, Center for Food Safety and Applied Nutrition, Washington DC.
8 Bremer P. J., Osborne C. M., Kemp R. A., van Veghl P., and Fletcher G. C. (1998) The thermal death times of Hafnia alvei in a model suspension and in artificially contaminated hot smoked kahawai (Arripis trutta). J. Food Prot., 61, 1047-1051.
9 Tuck C. J., Biesiekierski J. R., Schmid-Grendelmeier P., and Pohl, D. (2019) Food intolerances. Nutrients, 11 (7).
10 Maintz L., and Novak N. (2007) Histamine and histamine intolerance. Amer. J. Clin. Nutr, 85 (5) 1185-1196.
11 Ozogul Y., and Ozogul F. (2020) Biogenic amines formation, toxicity, regulations in food. In: Saad B., and Tofalo R. (Eds.) Biogenic amines in food: Analysis, occurrence and toxicity. London: Royal Society of Chemistry, 1–17.
12 Galgano F., Favati F., Bonadio M., Lorusso V., and Romano P. (2009) Food Res. Int., 42:1147.
13 Nakamoto M., Kunimura K., Suzuki J., and Kodera Y. (2020) Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides (Review). Exper. Thera. Medi., 19, 1550-1553.
14 Sharma K., Mahato N., and Lee Y. R. (2018) Systematic study on active compounds as antibacterial and antibiofilm agent in aging onions. J. food and drug anal., 26, 518-528.
15 Wang X., Yu L., Li F., Zhang G., and Zhou W. (2019) Synthesis of amide derivatives containing capsaicin and their antioxidant and antibacterial activities. J. Food Bioch., 43: e13061.
16 Bortolin R. C., Caregnato F. F., Junior A. M., Zanotto‐Filho A., Moresco K. S., Rios, A. O., and Moreira J. C. F. (2016) Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti‐inflammatory property, and quality of red pepper fruit from Capsicum baccatum. Ecot. Envi. Safe., 129 (16) 16-24.
17 James K., and Drummond P. D. (2018) Rapid induction analgesia for capsaicin‐induced pain in university students: A randomized, controlled trial. Inter. J. Clin. and Expe. Hypn., 66 (4) 428-450.
18 Zimmer A. R., Leonardi B., Miron D., Schapoval E., Oliveira J. R., and Gosmann G. (2012) Antioxidant and anti‐inflammatory properties of Capsicum baccatum: From traditional use to scientific approach. J. of Ethno., 139 (1) 228-233.
19 Friedman J. R., Nolan N. A., Brown K. C., Miles S. L., Akers A. T., Colclough K. W., and Dasgupta P. (2018) Anticancer activity of natural and synthetic capsaicin analogs. J. Phar. Exper Therap., 364 (3) 462-473.
20 Bilal M., Rasheed T., Iqbal H. M., Hu H. B., Wang W., and Zhang X. H. (2017) Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. Inter. J. Biolog. Macromolec., 103, 554-574.
21 Danish P., Ali Q., Haezz M. M., and Malik, A. (2020) Antifungal and antibacterial activity of Aloe Vera plant extract. Biol. Clin. Sci. Res. J., Volume, 4. https://doi.org/10.54112/bcsrj.v2020i1.4.
22 de Arauz L. J., Jozala A. F., Mazzola P. G., and Penna T. C. (2009) Nisin biotechnological production and application: A review. Tren. Food Sci. Tech., 20, 146-154.
23 Hasper H. E., Kramer N. E., Smith J. L., Hillman J. D., Zachariah C., and Kuipers O. P. (2006) An alternative bactericidal mechanism of action of lantibiotic peptides that target lipid II. Sci., 313, 1636-1637.
24 Breukink E., and de Kruijff B. (2006) Lipid II as a target for antibiotics. Natu. Revi. Drug Disc., 5, 321-323.
25 Umerska A., Strandh M., Cassisa V., Matougui N., Eveillard M., and Saulnier P. (2018) Synergistic Effect of Combinations Containing EDTA and the Antimicrobial Peptide AA230, an Arenicin-3 Derivative, on Gram-Negative Bacteria. Biomole., 8, 122.
26 Vally H., Misso N., and Madan V. (2009) Clinical effects of sulphite additives. Clin. Exper. Aller., 39, 1643-1651.
27 Bartowsky E. J. (2009) Bacterial spoilage of wine and approaches to minimize it. Lett. Appl. Microbi., 48, 149-156.
28 Rose A. H. (1989) Transport metabolism of sulfure dioxide in yeasts and filamentous fungi. In: Boddy L., Marchant R., and Read D. J. (Eds.) Nitrogen, phosphorus and sulphur utilization by fungi. Symposium of the British Mycological Society, New York: Cambridge University Press, 59-72.
29 Dembele S., Wang D., Yu L., Sun J., and Dong S. (2010) Effects of added crude green tea polyphenol on the lipid oxidation of common carp (Cyprinus carpio L.) and catfish (Clarias gariepinus Burchell) during refrigerated storage. J. Musc. Foods, 21, 738-756.
30 AOAC (2012) Official method 977.13. Official methods of analysis of AOAC International (19th Ed.). Rockville, MD: AOAC International.
31 Torido Y., Takahashi T., Kuda T., and Kimura B. (2012) Analysis of the growth of histamine-producing bacteria and histamine accumulation in fish during storage at low temperatures. Food Cont., 26, 174-177.
32 Maijala R. L. (1993) Formation of histamine and tyramine by some lactic acid bacteria in MRS broth and modified decarboxylation agar. Lett. Appl. Micro., 17, 40-43.
33 Crapo C., and Himelbloom B. (1999) Spoilage and histamine in whole Pacific herring (Clupea harengus pallasi) and pink salmon (Oncorhynchus gorbuscha) fillets. J. Food Safe., 19, 45-55.
34 Vosikisa V., Papageorgopouloua A., Economoub V., Frillingosc S., and Papadopouloub C. (2008) Survey of the histamine content in fish samples randomly selected from the Greek retail market. Food Addi. Contam., Part B Vol. 1, 122-129.
35 Kanki M., Yoda T., Tsukamoto T., and Baba E. (2007) Histidine decarboxylases and their role in accumulation of histamine in tuna and dried saury. Appl. Envir. Microb., 73 (5), 1467-73.
36 Pintado A. I., Pinho O., Ferreira I. M., Pintado M. M., Gomes A. M., and Malcata, F. X. (2008) Microbiological, biochemical and biogenic amine profiles of Terrincho cheese manufactured in several dairy farms. Inter. Dair. J., 18, 631-640.
37 Linares D. M., Del Río B., Ladero V., Martínez N., Fernández M., Martín M. C., and Álvarez, M. A. (2012) Factors influencing biogenic amines accumulation in dairy products. Fron. Micro., 3 (180), 1-10.
38 Gardini F., Martuscelli M., Caruso M. C., Galgano F., Crudele M. A., Favati F., and Suzzi, G. (2001) Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Inter. J. Food Micro., 64, 105-117.
39 Dotsch-Klerk M., Goossens W. P., Meijer G. W., and Van het Hof K. H. (2015) Reducing salt in food; Setting product-specific criteria aiming at a salt intake of 5 g per day. Euro. J. Clin. Nutr., 69 (7), 799-804.
40 Santos W. C., Souza M. R., Cerqueira M. M., and Glória, M. B. (2003) Bioactive amines formation in milk by Lactococcus in the presence or not of rennet and NaCl at 20 and 32 ◦C. Food Chem., 81, 595-606.
41 Díaz M., del Río B., Redruello B., Sánchez-Llana E., Martin M. C., Fernández M., and Ladero V. (2018) Lactobacillus parabuchneri produces histamine in refrigerated cheese at a temperature dependent rate. Inter. J. Food Sci. Tech., 53(10), 2342-2348.
42 Valsamaki K., Michaelidou A., and Polychroniadou A. (2000) Biogenic amine production in Feta cheese. Food Chem., 71, 259-266.
43 Barbieri F., Montanari C., Gardini F., and Tabanelli, G. (2019) Biogenic amine production by Lactic Acid Bacteria: A Review. Foods, 8 (1) 1-37.
44 Biji K. B., Ravishankar C. N., Venkateswarlu R., Mohan C. O., and Srinivasa Gopal T. K. (2016) Biogenic amines in seafood: a review. J. Food Sci. Tech., 53(5), 2210-2218.
45 EU Directive, Regulation (EC) no 1441/2007 of 5 December 2007, Off. J. Eur. Union (2007) L 322/12-29.
46 Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November (2015) on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001
47 Ismail A. B., Susan P., Hilton C. D., and Gary A. D. (2009) Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation–a review. Crit. Rev. Food Sci. Nutr., 49, 369-377.
48 Chen H. C., Hwang D. F., Chiou T. K., and Tsai Y. H. (2011) Determination of histamine in mahi-mahi fillets (Coryphaena hippurus) implicated in a foodborne poisoning. J. Food Saf., 31, 320-325.
49 Satoshi T., Minoru S., Hiroki Y., Yoshihide U., and Shinya H. (2016) Histamine H3 receptor antagonist OUP-186 attenuates the proliferation of cultured human breast cancer cell lines. Biochem. Biophys. Res. Commun., 480, 479-485.