How to cite this paper
Nahatskyi, R. (2023). Studying of the temperature influence on stability of fibrinogen macromolecules in aqueous solution: A literature mini-review.Current Chemistry Letters, 12(1), 203-206.
Refrences
1. Bag, M., & Valenzuela, L. (2017). Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review. International Journal of Molecular Sciences, 18(8), 1422. (DOI:10.3390/ijms18081422)
2. Frauenfelder, H., Chen, G., Berendzen, J., Fenimore, P. W., Jansson, H., McMahon, B. H., ... & Young, R. D. (2009). A unified model of protein dynamics. Proc Natl Acad Sci, 106 (13), 5129-34. (DOI: 10.1073/pnas.0900336106)
3. Ebbinghaus, S., Kim, S. J., Heyden, M., Yu, X., Heugen, U., Gruebele, M., ... & Havenith, M. (2007). An extended dynamical hydration shell around proteins. Proc Natl Acad Sci, 104 (52), 20749-52. (DOI: 10.1073/pnas.0709207104)
4. Born, B., Weingärtner, H., Bründermann, E., & Havenith, M. (2009). Solvation dynamics of model peptides probed by terahertz spectroscopy. Observation of the onset of collective network motions. J. Am. Chem. Soc, 131 (10), 3752-5. (DOI: 10.1021/ja808997y)
5. Lokotosh, T. V., Malomuzh, N. P., & Pankratov, K. N. (2010). Thermal Motion in Water + Electrolyte Solutions According to Quasi-Elastic Incoherent Neutron Scattering Data. J. Chem. Eng. Data, 55, 2021-29. (DOI:10.1021/je9009706)
6. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., & Kobayashi, K. (1999). Crystal structure of human serum albumin at 2.5 Å resolution, Protein Eng. 12 439–446. (DOI: 10.1093/protein/12.6.439)
7. Brown, J.R. (1977) Albumin Structure, Function and Uses, 1st Ed, Pergamon Press, Oxford, UK,
8. Rothschild, M. A., Oratz, M., & Schreiber, S. S. (1988) Serum albumin, Hepatology 8 385–401. (DOI:10.1002/hep.1840080234)
9. Carter, D. C., & Ho, J. X. (1994) Structure of serum albumin, Adv. Protein Chem. 45 153–203.
10. F. Kratz, (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles, J. Control. Release 132 171–183.
11. M. Rozga, W. Bal, (2010) The Cu(II)/Aβ/human serum albumin model of control mechanism for copper-related amyloid neurotoxicity, Chem. Res. Toxicol. 23 298–308
12. Doolittle, R. F. (2010). Structural Basis of Signalling Events Involving Fibrinogen and Fibrin. Handbook of Cell Signalling, 111–114. (DOI:10.1016/b978-0-12-374145-5.00017-6)
13. Doty, R. L. (2015). Handbook of Olfaction and Gustation: Doty/Handbook of Olfaction and Gustation. Hoboken, NJ, USA: John Wiley & Sons, Inc. (DOI:10.1002/9781118971758).
14. Weisel, J.W. (2007) Structure of fibrin: impact on clot stability. 5 Suppl 1:116–124. (DOI:10.1111/j.1538-7836.2007.02504.x)
15. Takagi T, & Doolittle R.F. (1975) Amino acid sequence studies on the α chain of human fibrinogen. Location of four plasmin attack points and a covalent cross-linking site. Biochemistry; 14(23):5149–5156. (DOI: 10.1021/bi00694a020)
16. Takagi, T, & Doolittle, R.F. (1975) Amino acid sequence studies on plasmin-derived fragments of human fibrinogen. Amino-terminal sequences of intermediate and terminal fragments. Biochemistry; 14(5): 940–946. (DOI: 10.1021/bi00676a010)
17. Mihalyi, E. (1983) Kinetics and molecular mechanism of the proteolytic fragmentation of fibrinogen. Ann NY Acad Sci.; 408:60–70. (DOI: 10.1111/j.1749-6632.1983.tb23234.x)
18. Kollman, J, Pandi, L, Sawaya, M, Riley, M, & Doolittle R. (2009) Crystal Structure of Human Fibrinogen. Biochemistry.; 48:3877–3886. (DOI: 10.1021/bi802205g)
19. Lim, B. B., Lee, E. H., Sotomayor, M., & Schulten, K. (2008). Molecular basis of fibrin clot elasticity. Structure, 16(3), 449-459. (DOI:10.1016/j.str.2007.12.019)
20. Zhmurov, A., Brown, A. E., Litvinov, R. I., Dima, R. I., Weisel, J. W., & Barsegov, V. (2011). Mechanism of fibrin (ogen) forced unfolding. Structure, 19(11), 1615-1624. (DOI: 10.1016/j.str.2011.08.013)
21. Deng, M., & Karniadakis, G. E. (2014). Coarse-grained modeling of protein unfolding dynamics. Multiscale Model Simul.,12(1) 109–118. (DOI: 10.1137/130921519)
22. Averett, R. D., Menn, B., Lee, E. H., Helms, C. C., Barker, T., & Guthold, M. (2012). modular fibrinogen model that captures the stress-strain behavior of fibrin fibers. Biophys J.; 103:1537–1544. (DOI: 10.1016/j.bpj. 2012.08.038)
23. Marsh, J. J., Guan, H. S., Li, S., Chiles, P. G., Tran, D., & Morris, T. A. (2013). Structural insights into fibrinogen dynamics using amide hydrogen/deuterium exchange mass spectrometry. Biochemistry. 52(32), 5491–5502. (DOI: 10.1021/bi4007995)
24. Lugovskoy, E. V., Makogonenko, E. M., & Komisarenko, S. V. (2013). Molecular mechanisms of formation and destruction of fibrin. Kyiv: Naukova Dumka, – 230 p.
25. Mosesson M.W. (2005) Fibrinogen and fibrin structure and functions. Journal of Thrombosis and Haemostasis, 3, 1894-1904. (DOI: 10.1111/j.1538-7836.2005.01365.x)
26. Weisel, J. W., Veklich, Y., & Gorkun, O. (1993). The Sequence of Cleavage of Fibrinopeptides from Fibrinogen Is Important for Protofibril Formation and Enhancement of Lateral Aggregation in Fibrin Clots. J Mol Biol. 5;232(1):285-97.