How to cite this paper
Dhaduk, M & Joshi, H. (2022). Synthesis, characterization and biological study of some new N-acetyl pyrazole derivatives.Current Chemistry Letters, 11(2), 199-206.
Refrences
1. Khalid K., Smaail R., Youssef R., Jamal T., Yahia N. M., Faiz A. Al-aizari and M’hammed A. (2018) Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, Molecules, 23 (1), 134.
2. Ilango K and Valentina P. (2007) Textbook of Medicinal Chemistry, 1st ed. Keerthi Publishers India: pp. 327–33.
3. Yusuf M. and Jain P. (2014) Synthetic and biological studies of pyrazolines and related heterocyclic compounds: Arabian J. Chem., 7 (5) 553-596.
4. Chouiter M. I., Boulebd H., Pereira D. M., Valentao P., Andrade P. B., Belfaitah A. and Silva A.M.S. (2020) New chalcone-type compounds and 2-pyrazoline derivatives: Synthesis and caspase-dependent anticancer activity. Future Med. Chem., 12 (6) 493–509.
5. Moreno L.M., Quiroga J., Abonia R., Ramírez-Prada J. and Insuasty B. (2018) Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents, Molecules, 23, 1956.
6. Fustero S., Sánchez-Roselló M., Barrio P. and Simón-Fuentes A. (2011) From 2000 to Mid-2010: A fruitful decade for the synthesis of pyrazoles, Chem. Rev., 111 (11) 6984–7034.
7. Vyas D., Tala S., Akbari J., Dhaduk M. and Joshi H. (2007) Synthesis and biological activity of some pyrazole derivatives, Indian J. Het. Chem., 17 (2) 169-172.
8. Mamedova G., Mahmudova A., Mamedov S., Erden Y., Taslimi P., Tüzün B., Tas R., Farzaliyev V., Sujayev A. and Alwasel S.H. (2019) Novel tribenzyl aminobenzolsulphonylimine based on their pyrazine and pyridazines: Synthesis, characterization, antidiabetic, anticancer, anticholinergic, and molecular docking studies, Bioorg. Chem., 93 103313.
9. Sun X., Zhang L., Gao M., Que X., Zhou C., Zhu D. and Cai Y. (2019) Nanoformulation of a Novel Pyrano [2,3-c] Pyrazole Heterocyclic Compound AMDPC Exhibits Anti-Cancer Activity via Blocking the Cell Cycle through a P53-Independent Pathway. Molecules, 24 (3) 624.
10. Samy A. El-Assalya, Abd El-Hamid A. Ismailb, Hamed A. B. and Mohamed G. A. (2021) Synthesis, molecular docking studies, and antimicrobial evaluation of pyrano[2, 3- c]pyrazole derivatives, Current Chemistry Letters, 10 (3) 309-328.
11. Chougala B. M., Samundeeswari S., Holiyachi M., Shastri L. A., Dodamani S., Jalalpure S., Dixit S. R., Joshi S. D. and Sunagar V. A. (2017) Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano [2,3-c] pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 125, 101-116.
12. Mishra V.K., Mishra M., Kashaw V. and Kashaw S.K. (2017) Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents, Bioorg. Med. Chem., 25 (6) 1949–1962.
13. Aggarwal S., Paliwal D., Kaushik D., Gupta G.K. and Kumar A. (2019) Synthesis, antimalarial evaluation and SAR study of some 1,3,5-trisubstituted pyrazoline derivatives, Lett. Org. Chem.,16 (10) 807–817.
14. Dinesha, Viveka S., Naik P. and Nagaraja G.K. (2014) Synthesis, characterization of new imidazoquinonyl chalcones and pyrazolines as potential anticancer and antioxidant agents, Med. Chem. Res., 23, 4189–4197.
15. Shaik A., Bhandare R.R., Palleapati K., Nissankararao S., Kancharlapalli V. and Shaik S. (2020) Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives, Molecules, 25 (5)1047.
16. Ansari A., Ali A. and Asif M. (2017) Biologically active pyrazole derivatives, New J. Chem., 41, 16–41.
17. Mohammad M. A., Melati K., Naziera M. N., Anis N. M, A., Mohd H., Mohd S. and Garima S. (2021) Synthesis, characterization, docking study and biological evaluation of new chalcone, pyrazoline, and pyrimidine derivatives as potent antimalarial compounds, Arabian journal of chemistry, 14 (9) 103304.
18. Steinbach G., Lynch P.M., Robin K.S.P., Wallace M.H., Hawk E., Gordon G.B., Wakabayashi N., Saunders B., Shen Y., Fujimura T., Su L.-K. and Levin A.B. (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis, N. Engl. J. Med., 342 (26) 1946–1952.
19. Friedrich G., Rose T. and Rissler K. (2002) Determination of lonazolac and its hydroxy and O-sulfated metabolites by on-line sample preparation liquid chromatography with fluorescence detection, J. Chromatogr, (B) 766 (2) 295–305.
20. Hampp C., Hartzema A.G. and Kauf T.L. (2008) Cost-utility analysis of rimonabant in the treatment of obesity, Value Health, 11 (3) 389–399.
21. Luttinger D. and Hlasta D.J. (1987) Antidepressant Agents, Annu. Rep. Med. Chem., 22 21–30.
22. Tsutomu K. and Toshitaka N. (1978) Effects of 1,3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole [difenamizole] on a conditioned avoidance response, Neuropharmacology, 17 (4-5) 249–256.
23. Neto J.S.S., and Zeni G. (2020) Alkynes and Nitrogen Compounds: Useful Substrates for the Synthesis of Pyrazoles, Chem. Eur. J., 26 8175–8189.
24. Bagley M.C., Lubinu M.C. and Mason C. (2007) The Preparation of Yne-Ones and Their Use in Heterocycle Synthesis, Synlett, 29 (5) 704–708.
25. Chen Z., Zhang Y., Nie J. and Ma J. A. (2018) Transition-metal-free [3+ 2] cycloaddition of nitro olefins and diazo acetonitrile: A facile access to multi substituted cyano pyrazoles, Org. Lett., 20 (7) 2120–2124.
26. Drikermann D., Kerndl V., Görls H. and Vilotijevic I. (2020) Intramolecular Cyclization of Vinyldiazoacetates as a Versatile Route to Substituted Pyrazoles, Synlett, 31 (12) 1158–1162.
27. Lapczuk-Krygier A., Kącka-Zych A., and Kula K. (2019) Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Current Chem. Lett., 8 (1) 13-38.
28. Kula K. and Zawadzińska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Curr. Chem. Lett., 10 (1) 9-16.
29. Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Lapczuk-Krygier A., Mirosław B. and Demchuk, O. M. (2020) [3+2] Cycloaddition of diaryl diazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct. 1203 127473.
30. Dimitris M. and Marina S. (2020) Pyrazoline Hybrids as Promising Anticancer Agents: An Up-to-Date Overview, Int. J. Mol. Sci., 21 (15) 5507.
31. Faisal M., Saeed A., Hussain S., Dar P. and Ali Larik F. (2019) Recent developments in synthetic chemistry and biological activities of pyrazole derivatives, J. Chem. Sci. 131 (28) 70.
2. Ilango K and Valentina P. (2007) Textbook of Medicinal Chemistry, 1st ed. Keerthi Publishers India: pp. 327–33.
3. Yusuf M. and Jain P. (2014) Synthetic and biological studies of pyrazolines and related heterocyclic compounds: Arabian J. Chem., 7 (5) 553-596.
4. Chouiter M. I., Boulebd H., Pereira D. M., Valentao P., Andrade P. B., Belfaitah A. and Silva A.M.S. (2020) New chalcone-type compounds and 2-pyrazoline derivatives: Synthesis and caspase-dependent anticancer activity. Future Med. Chem., 12 (6) 493–509.
5. Moreno L.M., Quiroga J., Abonia R., Ramírez-Prada J. and Insuasty B. (2018) Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents, Molecules, 23, 1956.
6. Fustero S., Sánchez-Roselló M., Barrio P. and Simón-Fuentes A. (2011) From 2000 to Mid-2010: A fruitful decade for the synthesis of pyrazoles, Chem. Rev., 111 (11) 6984–7034.
7. Vyas D., Tala S., Akbari J., Dhaduk M. and Joshi H. (2007) Synthesis and biological activity of some pyrazole derivatives, Indian J. Het. Chem., 17 (2) 169-172.
8. Mamedova G., Mahmudova A., Mamedov S., Erden Y., Taslimi P., Tüzün B., Tas R., Farzaliyev V., Sujayev A. and Alwasel S.H. (2019) Novel tribenzyl aminobenzolsulphonylimine based on their pyrazine and pyridazines: Synthesis, characterization, antidiabetic, anticancer, anticholinergic, and molecular docking studies, Bioorg. Chem., 93 103313.
9. Sun X., Zhang L., Gao M., Que X., Zhou C., Zhu D. and Cai Y. (2019) Nanoformulation of a Novel Pyrano [2,3-c] Pyrazole Heterocyclic Compound AMDPC Exhibits Anti-Cancer Activity via Blocking the Cell Cycle through a P53-Independent Pathway. Molecules, 24 (3) 624.
10. Samy A. El-Assalya, Abd El-Hamid A. Ismailb, Hamed A. B. and Mohamed G. A. (2021) Synthesis, molecular docking studies, and antimicrobial evaluation of pyrano[2, 3- c]pyrazole derivatives, Current Chemistry Letters, 10 (3) 309-328.
11. Chougala B. M., Samundeeswari S., Holiyachi M., Shastri L. A., Dodamani S., Jalalpure S., Dixit S. R., Joshi S. D. and Sunagar V. A. (2017) Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano [2,3-c] pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 125, 101-116.
12. Mishra V.K., Mishra M., Kashaw V. and Kashaw S.K. (2017) Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents, Bioorg. Med. Chem., 25 (6) 1949–1962.
13. Aggarwal S., Paliwal D., Kaushik D., Gupta G.K. and Kumar A. (2019) Synthesis, antimalarial evaluation and SAR study of some 1,3,5-trisubstituted pyrazoline derivatives, Lett. Org. Chem.,16 (10) 807–817.
14. Dinesha, Viveka S., Naik P. and Nagaraja G.K. (2014) Synthesis, characterization of new imidazoquinonyl chalcones and pyrazolines as potential anticancer and antioxidant agents, Med. Chem. Res., 23, 4189–4197.
15. Shaik A., Bhandare R.R., Palleapati K., Nissankararao S., Kancharlapalli V. and Shaik S. (2020) Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives, Molecules, 25 (5)1047.
16. Ansari A., Ali A. and Asif M. (2017) Biologically active pyrazole derivatives, New J. Chem., 41, 16–41.
17. Mohammad M. A., Melati K., Naziera M. N., Anis N. M, A., Mohd H., Mohd S. and Garima S. (2021) Synthesis, characterization, docking study and biological evaluation of new chalcone, pyrazoline, and pyrimidine derivatives as potent antimalarial compounds, Arabian journal of chemistry, 14 (9) 103304.
18. Steinbach G., Lynch P.M., Robin K.S.P., Wallace M.H., Hawk E., Gordon G.B., Wakabayashi N., Saunders B., Shen Y., Fujimura T., Su L.-K. and Levin A.B. (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis, N. Engl. J. Med., 342 (26) 1946–1952.
19. Friedrich G., Rose T. and Rissler K. (2002) Determination of lonazolac and its hydroxy and O-sulfated metabolites by on-line sample preparation liquid chromatography with fluorescence detection, J. Chromatogr, (B) 766 (2) 295–305.
20. Hampp C., Hartzema A.G. and Kauf T.L. (2008) Cost-utility analysis of rimonabant in the treatment of obesity, Value Health, 11 (3) 389–399.
21. Luttinger D. and Hlasta D.J. (1987) Antidepressant Agents, Annu. Rep. Med. Chem., 22 21–30.
22. Tsutomu K. and Toshitaka N. (1978) Effects of 1,3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole [difenamizole] on a conditioned avoidance response, Neuropharmacology, 17 (4-5) 249–256.
23. Neto J.S.S., and Zeni G. (2020) Alkynes and Nitrogen Compounds: Useful Substrates for the Synthesis of Pyrazoles, Chem. Eur. J., 26 8175–8189.
24. Bagley M.C., Lubinu M.C. and Mason C. (2007) The Preparation of Yne-Ones and Their Use in Heterocycle Synthesis, Synlett, 29 (5) 704–708.
25. Chen Z., Zhang Y., Nie J. and Ma J. A. (2018) Transition-metal-free [3+ 2] cycloaddition of nitro olefins and diazo acetonitrile: A facile access to multi substituted cyano pyrazoles, Org. Lett., 20 (7) 2120–2124.
26. Drikermann D., Kerndl V., Görls H. and Vilotijevic I. (2020) Intramolecular Cyclization of Vinyldiazoacetates as a Versatile Route to Substituted Pyrazoles, Synlett, 31 (12) 1158–1162.
27. Lapczuk-Krygier A., Kącka-Zych A., and Kula K. (2019) Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Current Chem. Lett., 8 (1) 13-38.
28. Kula K. and Zawadzińska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Curr. Chem. Lett., 10 (1) 9-16.
29. Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Lapczuk-Krygier A., Mirosław B. and Demchuk, O. M. (2020) [3+2] Cycloaddition of diaryl diazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct. 1203 127473.
30. Dimitris M. and Marina S. (2020) Pyrazoline Hybrids as Promising Anticancer Agents: An Up-to-Date Overview, Int. J. Mol. Sci., 21 (15) 5507.
31. Faisal M., Saeed A., Hussain S., Dar P. and Ali Larik F. (2019) Recent developments in synthetic chemistry and biological activities of pyrazole derivatives, J. Chem. Sci. 131 (28) 70.