How to cite this paper
Arunachalam, A., Induja, S., Parthasarathy, V & Raghavan, P. (2022). Silver-calcium-borates as better replacement for conventional organic antimicrobials in cosmetic products.Current Chemistry Letters, 11(1), 113-120.
Refrences
1. Nikaido H. (2009) Multidrug resistance in bacteria. Annu. Rev. Biochem., 78, 119–146.
2. Pendleton N. J., Gorman S. P., and Gilmore B. F. (2013) Clinical relevance of the ESKAPE pathogens. Expert. Rev. Anti. Infect. Ther., 11 (3), 297–308.
3. Lemire J., Harrison J. J., and Turner R. J. (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol., 11 (6), 371–84.
4. Argueta-Figueroa L., Morales-Luckie R. A., Scougall-Vilchis R. J., and Olea-Mejía O. F. (2014) Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu-Ni nanoparticles for potential use in dental materials. Prog. Nat. Sci.: Mater. Int., 24 (4), 321-328.
5. Ahmed M. M., Fatima F., Anwer Md. K., Alshahrani S. M., Alalaiwe A., and Katakam P. (2019) Biosynthesis, characterization of herbal and antimicrobial activity of silver nanoparticles based gel hand wash. Bioprocess Biosyst. Eng., 8, 577-583.
6. Delgado-Beleño Y., Martinez-Nuñez C. E., Cortez-Valadez M., Flores-López N. S., and Flores-Acosta M. (2018) Optical properties of silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater. Res. Bull., 99, 385-392.
7. Bankura K. P., Maity D., Mollick M. M. R., Mondal D., Bhowmick B., Bain M. K., Chakraborty A., Sarkar J., Acharya K., and Chattopadhyay D. (2012) Synthesis, characterization and antimicrobial activity of dextron sulphate stabilized silver nanoparticles. Carbohydr. Polym., 89 (4), 1159-1165.
8. Nguyen V. H., Kim B. K., Jo Y. L., and Shim J. J. (2012) Preparation and antibacterial activity of silver nanoparticles decorated graphene composite. J. Supercrit. Fluids, 72, 28-35.
9. Díaz M., Barba F., Miranda M., Guitián F., Torrecillas R., and Moya J. S. (2009) Synthesis and antimicrobial activity of a silver- hydroxyapatite nanocomposite. J. Nanomater., 498505, 1-7.
10. Garza-Cervantes J. A., Mendiola-Garza G., De Melo E. M., Dugmore T. I. J., Matharu A. S., and Morones-Ramirez J. R. (2020) Antimicrobial activity of a silver microfibrillated cellulose biocomposite against susceptible and resistant bacteria. Sci. Rep., 10, 1-7.
11. Mahajan S. D., Aalinkeel R., Law W. C., Reynolds J. L., Nair B. B., and Sykes D. E. (2012) Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int. J. Nanomed., 7, 5301–5314.
12. Liang X. W., Xu Z. P., Grice J., Zvyagin A.V., Roberts M. S., and Liu X. (2013) Penetration of nanoparticles into human skin. Curr. Pharm. Des., 19 (35), 6353-6366.
13. Mei X., Chen Kenneth S. A., and Gabriella B. (2016) Formulation and Evaluation of Antibacterial Creams and Gels Containing Metal Ions for Topical Application. J. Pharm., 2016, 1-10.
14. Arunachalam A. L., Induja S., Sakthidasan J., and Raghavan P. S., (2020) Calcium borates incorporated with silver and zinc as promising antibacterial agents. Mater. Lett., 275 (7), 128130.
15. Sharma Gaurav, Gadhiya Jayesh, Dhanawat Meenakshi. (2018) Textbook of Cosmetic Formulations. (DOI: https://www.researchgate.net/publication/325023106).
16. Cheng Y., Xiao H., Guo W., and Guo W. (2006) Structure and crystallization kinetics of PbO-B2O3 glasses. Ceram. Int., 444 (2), 173–178.
17. El-Egili K., Doweidar H., Moustafa Y.M., and Abbas I. (2003) Structure and some physical properties of PbO-P2O5 glasses. Phys. B: Condes. Matter, 339 (4), 237–245.
18. Boulos E. N., and Kreidl J. N. J. (1971) Structure and properties of silver borate glasses. J. Amer. Cer. Soc., 54 (8), 368–375.
19. Elfayoumi M. A. K., Abdel-Fattah Wafa, El-Bassyouni, and Gehan T. El-Bassyouni (2010) Development of biomimetic coatings on Sm oxide doped ELB (Eu–Li–borate) glasses. Mater. Sci. Eng.: C., 30 (4), 509-517.
20. Takayoshi K., Miki T., Akihiro M., Hayato M., Tadayuki T., Kohji N., Daisuke G., and Sadanori A. (2019) Fatty Acid Potassium Had Beneficial Bactericidal Effects and Removed Staphylococcus aureus Biofilms while Exhibiting Reduced Cytotoxicity towards Mouse Fibroblasts and Human Keratinocytes. Int. J. Mol. Sci., 20 (2), 312.
2. Pendleton N. J., Gorman S. P., and Gilmore B. F. (2013) Clinical relevance of the ESKAPE pathogens. Expert. Rev. Anti. Infect. Ther., 11 (3), 297–308.
3. Lemire J., Harrison J. J., and Turner R. J. (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol., 11 (6), 371–84.
4. Argueta-Figueroa L., Morales-Luckie R. A., Scougall-Vilchis R. J., and Olea-Mejía O. F. (2014) Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu-Ni nanoparticles for potential use in dental materials. Prog. Nat. Sci.: Mater. Int., 24 (4), 321-328.
5. Ahmed M. M., Fatima F., Anwer Md. K., Alshahrani S. M., Alalaiwe A., and Katakam P. (2019) Biosynthesis, characterization of herbal and antimicrobial activity of silver nanoparticles based gel hand wash. Bioprocess Biosyst. Eng., 8, 577-583.
6. Delgado-Beleño Y., Martinez-Nuñez C. E., Cortez-Valadez M., Flores-López N. S., and Flores-Acosta M. (2018) Optical properties of silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater. Res. Bull., 99, 385-392.
7. Bankura K. P., Maity D., Mollick M. M. R., Mondal D., Bhowmick B., Bain M. K., Chakraborty A., Sarkar J., Acharya K., and Chattopadhyay D. (2012) Synthesis, characterization and antimicrobial activity of dextron sulphate stabilized silver nanoparticles. Carbohydr. Polym., 89 (4), 1159-1165.
8. Nguyen V. H., Kim B. K., Jo Y. L., and Shim J. J. (2012) Preparation and antibacterial activity of silver nanoparticles decorated graphene composite. J. Supercrit. Fluids, 72, 28-35.
9. Díaz M., Barba F., Miranda M., Guitián F., Torrecillas R., and Moya J. S. (2009) Synthesis and antimicrobial activity of a silver- hydroxyapatite nanocomposite. J. Nanomater., 498505, 1-7.
10. Garza-Cervantes J. A., Mendiola-Garza G., De Melo E. M., Dugmore T. I. J., Matharu A. S., and Morones-Ramirez J. R. (2020) Antimicrobial activity of a silver microfibrillated cellulose biocomposite against susceptible and resistant bacteria. Sci. Rep., 10, 1-7.
11. Mahajan S. D., Aalinkeel R., Law W. C., Reynolds J. L., Nair B. B., and Sykes D. E. (2012) Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int. J. Nanomed., 7, 5301–5314.
12. Liang X. W., Xu Z. P., Grice J., Zvyagin A.V., Roberts M. S., and Liu X. (2013) Penetration of nanoparticles into human skin. Curr. Pharm. Des., 19 (35), 6353-6366.
13. Mei X., Chen Kenneth S. A., and Gabriella B. (2016) Formulation and Evaluation of Antibacterial Creams and Gels Containing Metal Ions for Topical Application. J. Pharm., 2016, 1-10.
14. Arunachalam A. L., Induja S., Sakthidasan J., and Raghavan P. S., (2020) Calcium borates incorporated with silver and zinc as promising antibacterial agents. Mater. Lett., 275 (7), 128130.
15. Sharma Gaurav, Gadhiya Jayesh, Dhanawat Meenakshi. (2018) Textbook of Cosmetic Formulations. (DOI: https://www.researchgate.net/publication/325023106).
16. Cheng Y., Xiao H., Guo W., and Guo W. (2006) Structure and crystallization kinetics of PbO-B2O3 glasses. Ceram. Int., 444 (2), 173–178.
17. El-Egili K., Doweidar H., Moustafa Y.M., and Abbas I. (2003) Structure and some physical properties of PbO-P2O5 glasses. Phys. B: Condes. Matter, 339 (4), 237–245.
18. Boulos E. N., and Kreidl J. N. J. (1971) Structure and properties of silver borate glasses. J. Amer. Cer. Soc., 54 (8), 368–375.
19. Elfayoumi M. A. K., Abdel-Fattah Wafa, El-Bassyouni, and Gehan T. El-Bassyouni (2010) Development of biomimetic coatings on Sm oxide doped ELB (Eu–Li–borate) glasses. Mater. Sci. Eng.: C., 30 (4), 509-517.
20. Takayoshi K., Miki T., Akihiro M., Hayato M., Tadayuki T., Kohji N., Daisuke G., and Sadanori A. (2019) Fatty Acid Potassium Had Beneficial Bactericidal Effects and Removed Staphylococcus aureus Biofilms while Exhibiting Reduced Cytotoxicity towards Mouse Fibroblasts and Human Keratinocytes. Int. J. Mol. Sci., 20 (2), 312.