How to cite this paper
Narayanaswamy, V., Alaabed, S., Issa, B., AL-Akhras, M & Obaidat, I. (2021). Molecular simulation of curcumin loading on graphene and graphene oxide for drug delivery applications.Current Chemistry Letters, 10(3), 161-168.
Refrences
1. Wilken R., Veena M.S., Wang M.B., and Srivatsan E.S. (2011) Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10 (12) 1-19.
2. Mahmood K., Zia K.M., Zuber M., Salman M., and Anjum M.N. (2015) Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review. Int. J. Biol. Macromol. 81, 877–890.
3. Kanai M. (2014) Therapeutic applications of curcumin for patients with pancreatic cancer. World J Gastroenterol 20 (28) 9384–9391.
4. Tomeh M.A., Hadianamrei R., and Zhao X. (2019) A Review of Curcumin and Its Derivatives as Anticancer Agents. Int J Mol Sci 20 (5) 1033.
5. Hosseini S.A., Zand H., and Cheraghpour M. (2019) The Influence of Curcumin on the Downregulation of MYC, Insulin and IGF-1 Receptors: A Possible Mechanism Underlying the Anti-Growth and Anti-Migration in Chemoresistant Colorectal Cancer Cells. Medicina 55 (4) 90.
6. Deng Y., Verron E., and Rohanizadeh R. (2016) Molecular Mechanisms of Anti-metastatic Activity of Curcumin. Anticancer Res 36 (11) 5639–5647.
7. Chung C., Kim Y.-K., Shin D., Ryoo S.R., Hong B.H., and Min D.H. (2013) Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res. 46 (10) 2211–2224.
8. Dasari S.T.P., McShan D., Dasmahapatra A.K., and Tchounwou P.B. (2018) A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. Nano-Micro Lett. 10 (3) 53.
9. Liu C.-C., Zhao J.J., Zhang R., Li H., Chen B., Zhang L.L., and Yang, H. (2017) Multifunctionalization of graphene and graphene oxide for controlled release and targeted delivery of anticancer drugs. Am J Transl Res 9 (12) 5197–5219.
10. Akkermans R.L.C., Spenley N.A., and Robertson S.H. (2013) Monte Carlo methods in Materials Studio. Molecular Simulation 39 (14–15) 1153–1164. Taylor & Francis.
11. Dao T.D., Erdenedelger G., and Jeong H.M. (2014) Water-dispersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly(methyl methacrylate)/graphene core–shell microsphere exhibiting ultra-low percolation threshold of electrical conductivity. Polymer 55 (18) 4709–4719.
12. Kazempour M., Namazi H., Akbarzadeh A., and Kabiri R. (2019) Synthesis and characterization of PEG-functionalized graphene oxide as an effective pH-sensitive drug carrier. Artificial Cells, Nanomedicine, and Biotechnology 47(1) 90–94. Taylor & Francis.
13. Sun H., Jin Z., Yang C., Akkermans R.L.C., Robertson S.H., Spenley N.A., Miller S., and Todd S.M. (2016) COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model 22 (2) 47.
14. Wang F., Xia W., Wang L., Wang J., Yang X., and Chen K. (2018) Grand Canonical Monte Carlo Simulations of Ethanol Conversion to Propylene Over Zeolite Catalysts. Front. Mater. 5. Frontiers.
15. Liu J., Li P., Xiao H., Zhang Y., Shi X., Lu X., and Chen X. (2015) Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation. AIP Advances 5 (11) 117151. American Institute of Physics.
16. Levine B.G., Stone J.E., and Kohlmeyer A. (2011) Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units—Radial Distribution Function Histogramming. J Comput Phys 230 (9) 3556–3569.