How to cite this paper
Zeynizadeh, B & Gilanizadeh, M. (2020). Microwave-promoted three-component Hantzsch synthesis of acridinediones under green conditions.Current Chemistry Letters, 9(2), 71-78.
Refrences
1. Shaabani A., Sarvary A., Ghasemi S., Rezayan A. H., Ghadari R., and Ng S. W. (2011) An environmentally benign approach for the synthesis of bifunctional sulfonamide-amide compounds via isocyanide-based multicomponent reactions. Green Chem., 13, 582-585.
2. Zhu J., and Bienayme H. (2005) Multicomponent Reactions, Wiley VCH, Weinheim.
3. Nasr-Esfahani M., Rafiee Z., and Kashi H. (2016) Nanoparticles tungstophosphoric acid supported on polyamic acid: catalytic synthesis of 1,8-dioxo-decahydroacridines and bulky bis(1,8-dioxodecahydro-acridine)s. J. Iran. Chem. Soc., 13, 1449-1461.
4. Tu S., Miao C., Gao Y., Fang F., Zhuang Q., Feng Y., and Shi D. (2004) A novel cascade reaction of aryl aldoxime with dimedone under microwave irradiation: the synthesis of N-hydroxylacridine. Synlett, 255-258.
5. Ngadi L., Galy A. M., Galy J. P., Barbe J., Cremieux A., Chevalier J., and Sharples D. (1990) Some new 1-nitro acridine derivatives as antimicrobial agents. Eur. J. Med. Chem., 25, 67-70.
6. Shchekotikhin Y. M., Nikolaeva T. G., Shub G. M., and Kriven’ko A. P. (2001) Synthesis and antimicrobial activity of substituted 1,8-dioxodecahydroacridines. Pharm. Chem. J., 35, 206-208.
7. Pyrko A. N. (2008) Synthesis and transformations of new 1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione derivatives. Russ. J. Org. Chem., 44, 1215-1224.
8. Wainwright M. J. (2001) Acridine-a neglected antibacterial chromophore. J. Antimicrob. Chemother., 47, 1-13.
9. Palani K., Thirumalai D., Ambalavanan P., Ponnuswamy M. N., and Ramakrishnan V. T. (2005) Synthesis and characterization of 9-(4-nitrophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H) acridinedione and its methoxyphenyl derivative. J. Chem. Crystallogr., 35, 751-760.
10. Tu S., Zhang X., Shi F., Li T., Wang Q., Zhu X., Zhang J., and Xu J. (2005) One-pot synthesis of novel N-cyclo-propyldecahydroacridine-1,8-dione derivatives under microwave irradiation. J. Heterocycl. Chem., 42, 1155-1159.
11. Gamage S. A., Spicer J. A., Atwell G. J., Finlay G. J., Baguley B. C., and Denny W. A. (1999) Structure-activity relationships for substituted bis(acridine-4-carboxamides): a new class of anticancer agents. J. Med. Chem., 42, 2383-2393.
12. Kaya M., Basar E., Çakir E., Tunca E., and Bulbul M. (2012) Synthesis and characterization of novel dioxo-acridine sulfonamide derivatives as new carbonic anhydrase inhibitors. J. Enzym. Inhib. Med. Chem., 27, 509-514.
13. Palani K., Ambalavanan P., Ponnuswamy M. N., Murugan P., and Ramakrishnan V. T. (2005) Crystal structures of two acridinedione derivatives. Cryst. Res. Technol., 40, 277-282.
14. Kidwai M., and Bhatnagar D. (2010) Ceric ammonium nitrate (CAN) catalyzed synthesis of N-substituted decahydroacridine-1,8-diones in PEG. Tetrahedron Lett., 51, 2700-2703.
15. Kawase M., Shah A., Gaveriya H., Motohashi N., Sakagami H., Varga A., and Molnar J. (2002) 3,5-Dibenzoyl-1,4-dihydropyridines: synthesis and MDR reversal in tumor cells. Bioorg. Med. Chem., 10, 1051-1055.
16. Janis R. A., and Triggle D. J. (1983) New developments in calcium ion channel antagonists. J. Med. Chem., 26, 775-785.
17. Ulus R., Yeşildağ I., Tanç M., Bülbül M., Kaya M., and Supuran C. T. (2013) Synthesis of novel acridine and bis acridine sulfonamides with effective inhibitory activity against the cytosolic carbonic anhydrase isoforms II and VII. Bioorg. Med. Chem., 21, 5799-5805.
18. Mikata Y., Yokoyama M., Mogami K., Kato M., Okura I., Chikira M., and Yano S. (1998) Intercalator-linked cisplatin: synthesis and antitumor activity of cis-dichloroplatinum(II) complexes connected to acridine and phenylquinolines by one methylene chain. Inorg. Chim. Acta., 279, 51-57.
19. da Rocha Pitta M. G., Souza É. S., Barros F. W. A., Filho M. O. M., Pessoa C. O., Hernandes M. Z., do Carmo Alves de Lima M., Galdino S. L., and da Rocha Pitta I. (2013) Synthesis and in vitro anticancer activity of novel thiazacridine derivatives. Med. Chem. Res., 22, 2421-2429.
20. Tu S. J., Lu Z., Shi D., Yao C., Gao Y., and Guo C. (2002) A convenient synthesis of 9-aryl-3,3,6,6-tetra-methyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-diones under microwave irradiation without solvent. Synth. Commun., 32, 2181-2185.
21. Wang G. W., and Miao C. B. (2006) Environmentally benign one-pot multi-component approaches to the synthesis of novel unsymmetrical 4-arylacridinediones. Green Chem., 8, 1080-1085.
22. Das B., Thirupathi P., Mahender I., Reddy V. S., and Rao Y. K. (2006) Amberlyst-15: an efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydro-acridines. J. Mol. Catal. A: Chem., 247, 233-239.
23. Xia J. J., and Zhang K. H. (2012) Synthesis of N-substituted acridinediones and polyhydroquinoline derivatives in refluxing water. Molecules, 17, 5339-5345.
24. Hong M., and Xiao G. (2012) FSG-Hf (NPf2)4 catalyzed, environmentally benign synthesis of 1,8-dioxo-deca-hydroaridines in water-ethanol. J. Fluorine Chem., 144, 7-9.
25. Zareia Z., and Akhlaghinia B. (2017) ZnII doped and immobilized on functionalized magnetic hydrotalcite (Fe3O4/HT-SMTU-ZnII): a novel, green and magnetically recyclable bifunctional nanocatalyst for the one-pot multi-component synthesis of acridinediones under solvent-free conditions. New J. Chem., 41, 15485-15500.
26. Işık A., Aday B., Ulus R., and Kaya M. (2015) One-pot, facile, highly efficient, and green synthesis of acridinedione derivatives using vitamin B1. Synth. Commun., 45, 2823-2831.
27. Rezaei R., Khalifeh R., Rajabzadeh M., Dorosty L., and Doroodmand M. M. (2013) Melamine-formaldehyde resin supported H+-catalyzed three-component synthesis of 1,8-dioxodecahydroacridine derivatives in water and under solvent-free conditions. Heterocycl. Commun., 19, 57-63.
28. Pamuk H., Aday B., Şen F., and Kaya M. (2015) PtNPs@GO as a highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Adv., 5, 49295-49300.
29. Mahesh P., Guruswamy K., Diwakar B. S., Devi B. R., Murthy Y. L. N., Kollu P., and Pammi S. V. N. (2015) Magnetically separable recyclable nano-ferrite catalyst for the synthesis of acridinediones and their derivatives under solvent-free conditions. Chem. Lett., 44, 1386-1388.
30. Khojastehnezhad A., Rahimizadeh M., Eshghi H., Moeinpour F., and Bakavoli M. (2014) Ferric hydrogen sulfate supported on silica-coated nickel ferrite nanoparticles as new and green magnetically separable catalyst for 1,8-dioxodecahydroacridine synthesis. Chinese J. Catal., 35, 376-382.
31. Aday B., Pamuk H., Kaya M., and Sen F. (2016) Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol., 16, 6498-6504.
32. Ramesh K. B., and Pasha M. A. (2014) Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1,8-diones using SiO2-I as a new heterogeneous catalyst and their anticancer activity. Bioorg. Med. Chem. Lett., 24, 3907-3913.
33. Nikpassand M., Mamaghani M., and Tabatabaeian K. (2009) An efficient one-pot three-component synthesis of fused 1,4-dihydropyridines using HY-zeolit. Molecules, 14, 1468-1474.
34. Vahdat S. M., and Baghery S. (2012) An efficient one-pot synthesis of 1,8-dioxodecahydroacridine by indium (III) chloride under ambient temperature in ethanol. Heterocycl. Lett., 2, 43-51.
35. Rostamizadeh S., Amirahmadi A., Shadjou N., and Amani A. M. (2012) MCM-41-SO3H as a nanoreactor for the one-pot, solvent-free synthesis of 1,8-dioxo-9-aryl decahydroacridines. J. Heterocycl. Chem., 49, 111-115.
36. Zhu A., Liu R., and Du C., Li L. (2017) Betainium-based ionic liquids catalyzed multicomponent Hantzsch reactions for the efficient synthesis of acridinediones. RSC Adv., 7, 6679-6684.
37. Yü S. J., Wu S., Zhao X. M., and Lü C. W. (2017) Green and efficient synthesis of acridine-1,8-diones and hexahydroquinolines via a KH2PO4 catalyzed Hantzsch-type reaction in aqueous ethanol. Res. Chem. Intermed., 43, 3121-3130.
38. Kiani M., and Mohammadipour M. (2017) Fe3O4@SiO2-MoO3H nanoparticles: a magnetically recyclable nanocatalyst system for the synthesis of 1,8-dioxodecahydroacridine derivatives. RSC Adv., 7, 997-1007.
39. Murthy Y. L. N., Rajack A., Ramji M. T., Babu J. J., Praveen C., and Lakshmi K. A. (2012) Design, solvent free synthesis, and antimicrobial evaluation of 1,4-dihydropyridines. Bioorg. Med. Chem. Lett., 22, 6016-6023.
40. Shen Y. B., and Wang G. W. (2008) Solvent-free synthesis of xanthenediones and acridinediones, ARKIVOC, xvi, 1-8.
41. Patil D., Chandam D., Mulik A., Patil P., Jagadale S., Kant R., Gupta V., and Deshmukh M. (2014) Novel Brønsted acidic ionic liquid ([CMIM][CF3COO]) prompted multicomponent Hantzsch reaction for the eco-friendly synthesis of acridinediones: an efficient and recyclable catalyst. Catal. Lett., 144, 949-958.
42. Dı´az-Ortiz A., Prieto P., and de la Hoz A. (2019) A critical overview on the effect of microwave irradiation in organic synthesis. Chem. Rec., 19, 85-97.
43. Stefanidis G., and Stankiewicz A. (2016) Alternative Energy Sources for Green Chemistry, 1st ed., Royal Society of Chemistry, Cambridge, UK.
44. Horikoshi S., and Serpone N. (2014) Role of microwaves in heterogeneous catalytic systems. Catal. Sci. Technol., 4, 1197-1210.
45. de la Hoz A., and Loupy A. (2013) Microwaves in Organic Synthesis, 3rd ed., Wiley-VCH, Weinheim.
46. Polshettiwar V., Nadagouda M. N., and Varma R. S. (2009) Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. Aust. J. Chem., 62, 16-26.
47. Polshettiwar V., and Varma R. S. (2008) Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 41, 629-639.
48. Tierney J. P., and Lidström P. (2007) Microwave Assisted Organic Synthesis, Blackwell Publishing, Oxford, UK.
49. de la Hoz A., Dı´az-Ortiz A., and Moreno A. (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 34, 164-178.
50. Kulkarni A. S., and Jayaram R. V. (2004) Liquid phase catalytic transfer hydrogenation of aromatic nitro compounds on La1-xSrxFeO3 perovskites prepared by microwave irradiation. J. Mol. Catal. A: Chem., 223, 107-110.
51. Bogdal, D. (2005) Microwave-assisted Organic Synthesis, One Hundred Reaction Procedures, 1st ed., Elsevier Science.
52. Lidström P., Tierney J., Wathey B., and Westman J. (2001) Microwave assisted organic synthesis - a review. Tetrahedron, 57, 9225-9283.
53. Vanden Eynde J. J., and Mayence A. (2003) Synthesis and aromatization of Hantzsch 1,4-dihydropyridines under microwave irradiation. An overview. Molecules, 8, 381-391.
54. Cotterill I. C., Usyatinsky A. Y., Arnold J. M., Clark D. S., Dordick J. S., Michels P. C., and Khmelnitsky Y. L. (1998) Microwave assisted combinatorial chemistry, synthesis of substituted pyridines. Tetrahedron Lett., 39, 1117-1120.
55. Vanden Eynde J. J., Labuche N., and van Haverbeke Y. (1997) Microwave-mediated domino reaction in dry medium. Preparation of dihydropyridinones and pyridinones structurally related to Hantzsch esters. Synth. Commun., 27, 3683-3690.
56. He W., Fang Z., Zhang K., Tu T., Lv N., Qiu C., and Guo K. (2018) A novel micro-flow system under microwave irradiation for continuous synthesis of 1,4-dihydropyridines in the absence of solvents via Hantzsch reaction. Chem. Eng. J., 331, 161-168.
57. Sharma D., Bandna Reddy C. B., Kumar S., Shil A. K., Guha N. R., and Das P. (2013) Microwave assisted solvent and catalyst free method for novel classes of β-enaminoester and acridinedione synthesis. RSC Adv., 3, 10335-10340.
58. Gilanizadeh M., and Zeynizadeh B. (2019) Synthesis of acridinediones and biscoumarins using Fe3O4@SiO2@Ni-Zn-Fe LDH as an efficient magnetically recoverable mesoporous catalyst. Polycycl. Aromat. Compd., doi: 10.1080/10406638.2019.1567560.
2. Zhu J., and Bienayme H. (2005) Multicomponent Reactions, Wiley VCH, Weinheim.
3. Nasr-Esfahani M., Rafiee Z., and Kashi H. (2016) Nanoparticles tungstophosphoric acid supported on polyamic acid: catalytic synthesis of 1,8-dioxo-decahydroacridines and bulky bis(1,8-dioxodecahydro-acridine)s. J. Iran. Chem. Soc., 13, 1449-1461.
4. Tu S., Miao C., Gao Y., Fang F., Zhuang Q., Feng Y., and Shi D. (2004) A novel cascade reaction of aryl aldoxime with dimedone under microwave irradiation: the synthesis of N-hydroxylacridine. Synlett, 255-258.
5. Ngadi L., Galy A. M., Galy J. P., Barbe J., Cremieux A., Chevalier J., and Sharples D. (1990) Some new 1-nitro acridine derivatives as antimicrobial agents. Eur. J. Med. Chem., 25, 67-70.
6. Shchekotikhin Y. M., Nikolaeva T. G., Shub G. M., and Kriven’ko A. P. (2001) Synthesis and antimicrobial activity of substituted 1,8-dioxodecahydroacridines. Pharm. Chem. J., 35, 206-208.
7. Pyrko A. N. (2008) Synthesis and transformations of new 1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione derivatives. Russ. J. Org. Chem., 44, 1215-1224.
8. Wainwright M. J. (2001) Acridine-a neglected antibacterial chromophore. J. Antimicrob. Chemother., 47, 1-13.
9. Palani K., Thirumalai D., Ambalavanan P., Ponnuswamy M. N., and Ramakrishnan V. T. (2005) Synthesis and characterization of 9-(4-nitrophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H) acridinedione and its methoxyphenyl derivative. J. Chem. Crystallogr., 35, 751-760.
10. Tu S., Zhang X., Shi F., Li T., Wang Q., Zhu X., Zhang J., and Xu J. (2005) One-pot synthesis of novel N-cyclo-propyldecahydroacridine-1,8-dione derivatives under microwave irradiation. J. Heterocycl. Chem., 42, 1155-1159.
11. Gamage S. A., Spicer J. A., Atwell G. J., Finlay G. J., Baguley B. C., and Denny W. A. (1999) Structure-activity relationships for substituted bis(acridine-4-carboxamides): a new class of anticancer agents. J. Med. Chem., 42, 2383-2393.
12. Kaya M., Basar E., Çakir E., Tunca E., and Bulbul M. (2012) Synthesis and characterization of novel dioxo-acridine sulfonamide derivatives as new carbonic anhydrase inhibitors. J. Enzym. Inhib. Med. Chem., 27, 509-514.
13. Palani K., Ambalavanan P., Ponnuswamy M. N., Murugan P., and Ramakrishnan V. T. (2005) Crystal structures of two acridinedione derivatives. Cryst. Res. Technol., 40, 277-282.
14. Kidwai M., and Bhatnagar D. (2010) Ceric ammonium nitrate (CAN) catalyzed synthesis of N-substituted decahydroacridine-1,8-diones in PEG. Tetrahedron Lett., 51, 2700-2703.
15. Kawase M., Shah A., Gaveriya H., Motohashi N., Sakagami H., Varga A., and Molnar J. (2002) 3,5-Dibenzoyl-1,4-dihydropyridines: synthesis and MDR reversal in tumor cells. Bioorg. Med. Chem., 10, 1051-1055.
16. Janis R. A., and Triggle D. J. (1983) New developments in calcium ion channel antagonists. J. Med. Chem., 26, 775-785.
17. Ulus R., Yeşildağ I., Tanç M., Bülbül M., Kaya M., and Supuran C. T. (2013) Synthesis of novel acridine and bis acridine sulfonamides with effective inhibitory activity against the cytosolic carbonic anhydrase isoforms II and VII. Bioorg. Med. Chem., 21, 5799-5805.
18. Mikata Y., Yokoyama M., Mogami K., Kato M., Okura I., Chikira M., and Yano S. (1998) Intercalator-linked cisplatin: synthesis and antitumor activity of cis-dichloroplatinum(II) complexes connected to acridine and phenylquinolines by one methylene chain. Inorg. Chim. Acta., 279, 51-57.
19. da Rocha Pitta M. G., Souza É. S., Barros F. W. A., Filho M. O. M., Pessoa C. O., Hernandes M. Z., do Carmo Alves de Lima M., Galdino S. L., and da Rocha Pitta I. (2013) Synthesis and in vitro anticancer activity of novel thiazacridine derivatives. Med. Chem. Res., 22, 2421-2429.
20. Tu S. J., Lu Z., Shi D., Yao C., Gao Y., and Guo C. (2002) A convenient synthesis of 9-aryl-3,3,6,6-tetra-methyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-diones under microwave irradiation without solvent. Synth. Commun., 32, 2181-2185.
21. Wang G. W., and Miao C. B. (2006) Environmentally benign one-pot multi-component approaches to the synthesis of novel unsymmetrical 4-arylacridinediones. Green Chem., 8, 1080-1085.
22. Das B., Thirupathi P., Mahender I., Reddy V. S., and Rao Y. K. (2006) Amberlyst-15: an efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydro-acridines. J. Mol. Catal. A: Chem., 247, 233-239.
23. Xia J. J., and Zhang K. H. (2012) Synthesis of N-substituted acridinediones and polyhydroquinoline derivatives in refluxing water. Molecules, 17, 5339-5345.
24. Hong M., and Xiao G. (2012) FSG-Hf (NPf2)4 catalyzed, environmentally benign synthesis of 1,8-dioxo-deca-hydroaridines in water-ethanol. J. Fluorine Chem., 144, 7-9.
25. Zareia Z., and Akhlaghinia B. (2017) ZnII doped and immobilized on functionalized magnetic hydrotalcite (Fe3O4/HT-SMTU-ZnII): a novel, green and magnetically recyclable bifunctional nanocatalyst for the one-pot multi-component synthesis of acridinediones under solvent-free conditions. New J. Chem., 41, 15485-15500.
26. Işık A., Aday B., Ulus R., and Kaya M. (2015) One-pot, facile, highly efficient, and green synthesis of acridinedione derivatives using vitamin B1. Synth. Commun., 45, 2823-2831.
27. Rezaei R., Khalifeh R., Rajabzadeh M., Dorosty L., and Doroodmand M. M. (2013) Melamine-formaldehyde resin supported H+-catalyzed three-component synthesis of 1,8-dioxodecahydroacridine derivatives in water and under solvent-free conditions. Heterocycl. Commun., 19, 57-63.
28. Pamuk H., Aday B., Şen F., and Kaya M. (2015) PtNPs@GO as a highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Adv., 5, 49295-49300.
29. Mahesh P., Guruswamy K., Diwakar B. S., Devi B. R., Murthy Y. L. N., Kollu P., and Pammi S. V. N. (2015) Magnetically separable recyclable nano-ferrite catalyst for the synthesis of acridinediones and their derivatives under solvent-free conditions. Chem. Lett., 44, 1386-1388.
30. Khojastehnezhad A., Rahimizadeh M., Eshghi H., Moeinpour F., and Bakavoli M. (2014) Ferric hydrogen sulfate supported on silica-coated nickel ferrite nanoparticles as new and green magnetically separable catalyst for 1,8-dioxodecahydroacridine synthesis. Chinese J. Catal., 35, 376-382.
31. Aday B., Pamuk H., Kaya M., and Sen F. (2016) Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol., 16, 6498-6504.
32. Ramesh K. B., and Pasha M. A. (2014) Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1,8-diones using SiO2-I as a new heterogeneous catalyst and their anticancer activity. Bioorg. Med. Chem. Lett., 24, 3907-3913.
33. Nikpassand M., Mamaghani M., and Tabatabaeian K. (2009) An efficient one-pot three-component synthesis of fused 1,4-dihydropyridines using HY-zeolit. Molecules, 14, 1468-1474.
34. Vahdat S. M., and Baghery S. (2012) An efficient one-pot synthesis of 1,8-dioxodecahydroacridine by indium (III) chloride under ambient temperature in ethanol. Heterocycl. Lett., 2, 43-51.
35. Rostamizadeh S., Amirahmadi A., Shadjou N., and Amani A. M. (2012) MCM-41-SO3H as a nanoreactor for the one-pot, solvent-free synthesis of 1,8-dioxo-9-aryl decahydroacridines. J. Heterocycl. Chem., 49, 111-115.
36. Zhu A., Liu R., and Du C., Li L. (2017) Betainium-based ionic liquids catalyzed multicomponent Hantzsch reactions for the efficient synthesis of acridinediones. RSC Adv., 7, 6679-6684.
37. Yü S. J., Wu S., Zhao X. M., and Lü C. W. (2017) Green and efficient synthesis of acridine-1,8-diones and hexahydroquinolines via a KH2PO4 catalyzed Hantzsch-type reaction in aqueous ethanol. Res. Chem. Intermed., 43, 3121-3130.
38. Kiani M., and Mohammadipour M. (2017) Fe3O4@SiO2-MoO3H nanoparticles: a magnetically recyclable nanocatalyst system for the synthesis of 1,8-dioxodecahydroacridine derivatives. RSC Adv., 7, 997-1007.
39. Murthy Y. L. N., Rajack A., Ramji M. T., Babu J. J., Praveen C., and Lakshmi K. A. (2012) Design, solvent free synthesis, and antimicrobial evaluation of 1,4-dihydropyridines. Bioorg. Med. Chem. Lett., 22, 6016-6023.
40. Shen Y. B., and Wang G. W. (2008) Solvent-free synthesis of xanthenediones and acridinediones, ARKIVOC, xvi, 1-8.
41. Patil D., Chandam D., Mulik A., Patil P., Jagadale S., Kant R., Gupta V., and Deshmukh M. (2014) Novel Brønsted acidic ionic liquid ([CMIM][CF3COO]) prompted multicomponent Hantzsch reaction for the eco-friendly synthesis of acridinediones: an efficient and recyclable catalyst. Catal. Lett., 144, 949-958.
42. Dı´az-Ortiz A., Prieto P., and de la Hoz A. (2019) A critical overview on the effect of microwave irradiation in organic synthesis. Chem. Rec., 19, 85-97.
43. Stefanidis G., and Stankiewicz A. (2016) Alternative Energy Sources for Green Chemistry, 1st ed., Royal Society of Chemistry, Cambridge, UK.
44. Horikoshi S., and Serpone N. (2014) Role of microwaves in heterogeneous catalytic systems. Catal. Sci. Technol., 4, 1197-1210.
45. de la Hoz A., and Loupy A. (2013) Microwaves in Organic Synthesis, 3rd ed., Wiley-VCH, Weinheim.
46. Polshettiwar V., Nadagouda M. N., and Varma R. S. (2009) Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. Aust. J. Chem., 62, 16-26.
47. Polshettiwar V., and Varma R. S. (2008) Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 41, 629-639.
48. Tierney J. P., and Lidström P. (2007) Microwave Assisted Organic Synthesis, Blackwell Publishing, Oxford, UK.
49. de la Hoz A., Dı´az-Ortiz A., and Moreno A. (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 34, 164-178.
50. Kulkarni A. S., and Jayaram R. V. (2004) Liquid phase catalytic transfer hydrogenation of aromatic nitro compounds on La1-xSrxFeO3 perovskites prepared by microwave irradiation. J. Mol. Catal. A: Chem., 223, 107-110.
51. Bogdal, D. (2005) Microwave-assisted Organic Synthesis, One Hundred Reaction Procedures, 1st ed., Elsevier Science.
52. Lidström P., Tierney J., Wathey B., and Westman J. (2001) Microwave assisted organic synthesis - a review. Tetrahedron, 57, 9225-9283.
53. Vanden Eynde J. J., and Mayence A. (2003) Synthesis and aromatization of Hantzsch 1,4-dihydropyridines under microwave irradiation. An overview. Molecules, 8, 381-391.
54. Cotterill I. C., Usyatinsky A. Y., Arnold J. M., Clark D. S., Dordick J. S., Michels P. C., and Khmelnitsky Y. L. (1998) Microwave assisted combinatorial chemistry, synthesis of substituted pyridines. Tetrahedron Lett., 39, 1117-1120.
55. Vanden Eynde J. J., Labuche N., and van Haverbeke Y. (1997) Microwave-mediated domino reaction in dry medium. Preparation of dihydropyridinones and pyridinones structurally related to Hantzsch esters. Synth. Commun., 27, 3683-3690.
56. He W., Fang Z., Zhang K., Tu T., Lv N., Qiu C., and Guo K. (2018) A novel micro-flow system under microwave irradiation for continuous synthesis of 1,4-dihydropyridines in the absence of solvents via Hantzsch reaction. Chem. Eng. J., 331, 161-168.
57. Sharma D., Bandna Reddy C. B., Kumar S., Shil A. K., Guha N. R., and Das P. (2013) Microwave assisted solvent and catalyst free method for novel classes of β-enaminoester and acridinedione synthesis. RSC Adv., 3, 10335-10340.
58. Gilanizadeh M., and Zeynizadeh B. (2019) Synthesis of acridinediones and biscoumarins using Fe3O4@SiO2@Ni-Zn-Fe LDH as an efficient magnetically recoverable mesoporous catalyst. Polycycl. Aromat. Compd., doi: 10.1080/10406638.2019.1567560.