How to cite this paper
Dhakar, A., Goyal, R., Rajput, A., Kaurav, M & Agarwal, V. (2019). Multicomponent synthesis of 4H-pyran derivatives using KOH loaded calcium oxide as catalyst in solvent free condition.Current Chemistry Letters, 8(3), 125-136.
Refrences
1. Thirumurugan, P., Nandakumar, A., Muralidharan, D., & Perumal, P. T. (2009). Simple and Convenient Approach to the Kr€ ohnke Pyridine Type Synthesis of Functionalized Indol-3-yl Pyridine Derivatives Using 3-Cyanoacetyl Indole. J. Comb. Chem., 12(1), 161-167.
2. de Souza Siqueira, M., & da Silva-Filho, L. C. (2016). NbCl5-promoted the synthesis of 4H-pyrans through multicomponent reaction. Tetrahedron Lett., 57(46), 5050-5052.
3. Uckun, F. M., Mao, C., Vassilev, A. O., Huang, H., & Jan, S. T. (2000). Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bio. Org. Med. Chem. Lett., 10(6), 541-545.
4. Taylor, N. R., Cleasby, A., Singh, O., Skarzynski, T., Wonacott, A. J., Smith, P. W., ... & Colman, P. (1998). Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 2. Crystallographic and molecular modeling study of complexes of 4-amino-4 H-pyran-6-carboxamides and sialidase from influenza virus types A and B. J. Med. Chem., 41(6), 798-807.
5. Kang, S. S., Kim, H. J., Jin, C., & Lee, Y. S. (2009). Synthesis of tyrosinase inhibitory (4-oxo-4H-pyran-2-yl) acrylic acid ester derivatives. Bioorg. Med. Chem. Lett., 19(1), 188-191.
6. Wyatt, P. G., Coomber, B. A., Evans, D. N., Jack, T. I., Fulton, H. E., Wonacott, A. J., ... & Varghese, J. (2001). Sialidase inhibitors related to zanamivir. Further SAR studies of 4-amino-4H-pyran-2-carboxylic acid-6-propylamides. Bioorg. Med. Chem. Lett., 11(5), 669-673.
7. Nakajima, H., Sonomoto, K., Sato, F., Yamada, Y., & Tanaka, A. (1990). Pigment synthesis by immobilized cultured cells of Lavandula vera and characterization of a component of the pigments. Agric. Biol. Chem., 54(1), 53-59.
8. Suzuki, Y., & Yokoyama, K. (2005). Design and synthesis of intramolecular charge transfer-based fluorescent reagents for the highly-sensitive detection of proteins. J. Am. Chem. Soc., 127(50), 17799-17802.
9. Armesto, D., Horspool, W. M., Martin, N., Ramos, A., & Seoane, C. (1989). Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3, 5-dicyano-6-phenyl-4H-pyrans. J. Org. Chem., 54(13), 3069-3072.
10. Kumar, C. U., Sethukumar, A., & Prakasam, B. A. (2013). Synthesis and spectral studies of some 4H-pyran derivatives: Crystal and molecular structure of isobutyl 6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxylate. J. Mol. Struct., 1036, 257-266.
11. Sahu, P. K., Sahu, P. K., & Agarwal, D. D. (2015). Role of basicity and the catalytic activity of KOH loaded MgO and hydrotalcite as catalysts for the efficient synthesis of 1-[(2-benzothiazolylamino) arylmethyl]-2-naphthalenols. RSC Advance, 5(85), 69143-69151.
12. Xu, X., Shi, W., Zhou, Y., Wang, Y., Zhang, M., Song, L., & Deng, H. (2015). Convenient one-pot synthesis of monofluorinated functionalized 4-H-pyran derivatives via multi-component reactions. J. Fluorine Chem., 176, 127-133.
13. Banerjee, S., Horn, A., Khatri, H., & Sereda, G. (2011). A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 52(16), 1878-1881.
14. Khan, A. T., Lal, M., Ali, S., & Khan, M. M. (2011). One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. Tetrahedron Lett., 52(41), 5327-5332.
15. Kharbangar, I., Rohman, M. R., Mecadon, H., & Myrboh, B. (2012). KF-Al2O3 as an Efficient and Recyclable Basic Catalyst for the Synthesis of 4H-Pyran-3-carboxylates and 5-Acetyl-4H-pyrans. Int. J. Org. Chem. 2(03), 282.
16. Dekamin, M. G., Peyman, S. Z., Karimi, Z., Javanshir, S., Naimi-Jamal, M. R., & Barikani, M. (2016). Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol., 87, 172-179.
17. Wagh, Y. B., Tayade, Y. A., Padvi, S. A., Patil, B. S., Patil, N. B., & Dalal, D. S. (2015). A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives. Chinese Chem. Lett., 26(10), 1273-1277.
18. Kiyani, H., & Ghorbani, F. (2014). Potassium phthalimide promoted green multicomponent tandem synthesis of 2-amino-4H-chromenes and 6-amino-4H-pyran-3-carboxylates. J. Saudi Chem. Soc., 18(5), 689-701.
19. Mansoor, S. S., Logaiya, K., Aswin, K., & Sudhan, P. N. (2015). An appropriate one-pot synthesis of 3, 4-dihydropyrano [c] chromenes and 6-amino-5-cyano-4-aryl-2-methyl-4 H-pyrans with thiourea dioxide as an efficient, reusable organic catalyst in aqueous medium. J. Taibah Univ. Sci., 9(2), 213-226.
2. de Souza Siqueira, M., & da Silva-Filho, L. C. (2016). NbCl5-promoted the synthesis of 4H-pyrans through multicomponent reaction. Tetrahedron Lett., 57(46), 5050-5052.
3. Uckun, F. M., Mao, C., Vassilev, A. O., Huang, H., & Jan, S. T. (2000). Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bio. Org. Med. Chem. Lett., 10(6), 541-545.
4. Taylor, N. R., Cleasby, A., Singh, O., Skarzynski, T., Wonacott, A. J., Smith, P. W., ... & Colman, P. (1998). Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 2. Crystallographic and molecular modeling study of complexes of 4-amino-4 H-pyran-6-carboxamides and sialidase from influenza virus types A and B. J. Med. Chem., 41(6), 798-807.
5. Kang, S. S., Kim, H. J., Jin, C., & Lee, Y. S. (2009). Synthesis of tyrosinase inhibitory (4-oxo-4H-pyran-2-yl) acrylic acid ester derivatives. Bioorg. Med. Chem. Lett., 19(1), 188-191.
6. Wyatt, P. G., Coomber, B. A., Evans, D. N., Jack, T. I., Fulton, H. E., Wonacott, A. J., ... & Varghese, J. (2001). Sialidase inhibitors related to zanamivir. Further SAR studies of 4-amino-4H-pyran-2-carboxylic acid-6-propylamides. Bioorg. Med. Chem. Lett., 11(5), 669-673.
7. Nakajima, H., Sonomoto, K., Sato, F., Yamada, Y., & Tanaka, A. (1990). Pigment synthesis by immobilized cultured cells of Lavandula vera and characterization of a component of the pigments. Agric. Biol. Chem., 54(1), 53-59.
8. Suzuki, Y., & Yokoyama, K. (2005). Design and synthesis of intramolecular charge transfer-based fluorescent reagents for the highly-sensitive detection of proteins. J. Am. Chem. Soc., 127(50), 17799-17802.
9. Armesto, D., Horspool, W. M., Martin, N., Ramos, A., & Seoane, C. (1989). Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3, 5-dicyano-6-phenyl-4H-pyrans. J. Org. Chem., 54(13), 3069-3072.
10. Kumar, C. U., Sethukumar, A., & Prakasam, B. A. (2013). Synthesis and spectral studies of some 4H-pyran derivatives: Crystal and molecular structure of isobutyl 6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxylate. J. Mol. Struct., 1036, 257-266.
11. Sahu, P. K., Sahu, P. K., & Agarwal, D. D. (2015). Role of basicity and the catalytic activity of KOH loaded MgO and hydrotalcite as catalysts for the efficient synthesis of 1-[(2-benzothiazolylamino) arylmethyl]-2-naphthalenols. RSC Advance, 5(85), 69143-69151.
12. Xu, X., Shi, W., Zhou, Y., Wang, Y., Zhang, M., Song, L., & Deng, H. (2015). Convenient one-pot synthesis of monofluorinated functionalized 4-H-pyran derivatives via multi-component reactions. J. Fluorine Chem., 176, 127-133.
13. Banerjee, S., Horn, A., Khatri, H., & Sereda, G. (2011). A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 52(16), 1878-1881.
14. Khan, A. T., Lal, M., Ali, S., & Khan, M. M. (2011). One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. Tetrahedron Lett., 52(41), 5327-5332.
15. Kharbangar, I., Rohman, M. R., Mecadon, H., & Myrboh, B. (2012). KF-Al2O3 as an Efficient and Recyclable Basic Catalyst for the Synthesis of 4H-Pyran-3-carboxylates and 5-Acetyl-4H-pyrans. Int. J. Org. Chem. 2(03), 282.
16. Dekamin, M. G., Peyman, S. Z., Karimi, Z., Javanshir, S., Naimi-Jamal, M. R., & Barikani, M. (2016). Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol., 87, 172-179.
17. Wagh, Y. B., Tayade, Y. A., Padvi, S. A., Patil, B. S., Patil, N. B., & Dalal, D. S. (2015). A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives. Chinese Chem. Lett., 26(10), 1273-1277.
18. Kiyani, H., & Ghorbani, F. (2014). Potassium phthalimide promoted green multicomponent tandem synthesis of 2-amino-4H-chromenes and 6-amino-4H-pyran-3-carboxylates. J. Saudi Chem. Soc., 18(5), 689-701.
19. Mansoor, S. S., Logaiya, K., Aswin, K., & Sudhan, P. N. (2015). An appropriate one-pot synthesis of 3, 4-dihydropyrano [c] chromenes and 6-amino-5-cyano-4-aryl-2-methyl-4 H-pyrans with thiourea dioxide as an efficient, reusable organic catalyst in aqueous medium. J. Taibah Univ. Sci., 9(2), 213-226.