How to cite this paper
Sadjadi, S & Naimi-Jamal, M. (2019). A survey on application of MOFs in chemistry.Current Chemistry Letters, 8(2), 97-116.
Refrences
1. Yaghi, O. M., Li, G., & Li, H. (1995). Selective binding and removal of guests in a microporous metal–organic framework. Nature, 378(6558), 703.
2. Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The chemistry and applications of metal-organic frameworks. Science, 341(6149), 1230444.
3. Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M., & Yaghi, O. M. (2005). Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Accounts Chem. Res., 38(3), 176-182.
4. Tranchemontagne, D. J., Mendoza-Cortés, J. L., O’Keeffe, M., & Yaghi, O. M. (2009). Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev., 38(5), 1257-1283.
5. Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M., & Yaghi, O. M. (2005). Rod packings and metal− organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc., 127(5), 1504-1518.
6. O’Keeffe, M., Peskov, M. A., Ramsden, S. J., & Yaghi, O. M. (2008). The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Accounts Chem. Res., 41(12), 1782-1789.
7. Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev., 38(5), 1315-1329.
8. Farha, O. K., & Hupp, J. T. (2010). Rational design, synthesis, purification, and activation of metal− organic framework materials. Accounts Chem. Res., 43(8), 1166-1175.
9. Llewellyn, P. L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., ... & Hwa Jhung, S. (2008). High uptakes of CO2 and CH4 in mesoporous metal organic frameworks mil-100 and mil-101. Langmuir, 24(14), 7245-7250.
10. Kim, J., Chen, B., Reineke, T. M., Li, H., Eddaoudi, M., Moler, D. B., ... & Yaghi, O. M. (2001). Assembly of metal− organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. J. Am. Chem. Soc., 123(34), 8239-8247.
11. Britt, D., Furukawa, H., Wang, B., Glover, T. G., & Yaghi, O. M. (2009). Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. P. Natl. A. Sci., 106(49), 20637-20640.
12. Shekhah, O., Liu, J., Fischer, R. A., & Wöll, C. (2011). MOF thin films: existing and future applications. Chem. Soc. Rev., 40(2), 1081-1106.
13. Schneemann, A., Bon, V., Schwedler, I., Senkovska, I., Kaskel, S., & Fischer, R. A. (2014). Flexible metal–organic frameworks. Chem. Soc. Rev., 43(16), 6062-6096.
14. Zhao, D., Timmons, D. J., Yuan, D., & Zhou, H. C. (2010). Tuning the topology and functionality of metal− organic frameworks by ligand design. Accounts Chem. Res., 44(2), 123-133.
15. An, J., Geib, S. J., & Rosi, N. L. (2009). High and selective CO2 uptake in a cobalt adeninate metal− organic framework exhibiting pyrimidine-and amino-decorated pores. J. Am. Chem. Soc., 132(1), 38-39.
16. Aromí, G., Barrios, L. A., Roubeau, O., & Gamez, P. (2011). Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coordin. Chem. Rev., 255(5-6), 485-546.
17. Spokoyny, A. M., Kim, D., Sumrein, A., & Mirkin, C. A. (2009). Infinite coordination polymer nano-and microparticle structures. Chem. Soc. Rev., 38(5), 1218-1227.
18. Wilmer, C. E., Leaf, M., Lee, C. Y., Farha, O. K., Hauser, B. G., Hupp, J. T., & Snurr, R. Q. (2012). Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry, 4(2), 83.
19. Liu, Y., Eubank, J. F., Cairns, A. J., Eckert, J., Kravtsov, V. C., Luebke, R., & Eddaoudi, M. (2007). Assembly of metal–organic frameworks (MOFs) based on indium‐trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew. Chem., 119(18), 3342-3347.
20. Qiu, S., & Zhu, G. (2009). Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordin. Chem. Rev., 253(23-24), 2891-2911.
21. Shekhah, O., Wang, H., Kowarik, S., Schreiber, F., Paulus, M., Tolan, M., ... & Wöll, C. (2007). Step-by-step route for the synthesis of metal− organic frameworks. J. Am. Chem. Soc., 129(49), 15118-15119.
22. Britt, D., Tranchemontagne, D., & Yaghi, O. M. (2008). Metal-organic frameworks with high capacity and selectivity for harmful gases. P. Natl. A. Sci., 105(33), 11623-11627.
23. Hurd, J. A., Vaidhyanathan, R., Thangadurai, V., Ratcliffe, C. I., Moudrakovski, I. L., & Shimizu, G. K. (2009). Anhydrous proton conduction at 150 C in a crystalline metal–organic framework. Nature chemistry, 1(9), 705.
24. Shimizu, G. K., Vaidhyanathan, R., & Taylor, J. M. (2009). Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev., 38(5), 1430-1449.
25. Gu, Z. Y., Yang, C. X., Chang, N. A., & Yan, X. P. (2012). Metal–organic frameworks for Anal. Chem.: from sample collection to chromatographic separation. Accounts Chem. Res., 45(5), 734-745.
26. Keskin, S., van Heest, T. M., & Sholl, D. S. (2010). Can metal–organic framework materials play a useful role in large‐scale carbon dioxide separations?. ChemSusChem, 3(8), 879-891.
27. Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X., Adil, K., ... & Eddaoudi, M. (2014). A supermolecular building approach for the design and construction of metal–organic frameworks. Chem. Soc. Rev., 43(16), 6141-6172.
28. Coronado, E., & Espallargas, G. M. (2013). Dynamic magnetic MOFs. Chem. Soc. Rev., 42(4), 1525-1539.
29. Horike, S., Umeyama, D., & Kitagawa, S. (2013). Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Accounts Chem. Res., 46(11), 2376-2384.
30. Furukawa, H., Kim, J., Ockwig, N. W., O’Keeffe, M., & Yaghi, O. M. (2008). Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal− organic frameworks and Polyhedra. J. Am. Chem. Soc., 130(35), 11650-11661.
31. Tranchemontagne, D. J., Hunt, J. R., & Yaghi, O. M. (2008). Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 64(36), 8553-8557.
32. Wang, Z., & Cohen, S. M. (2007). Postsynthetic covalent modification of a neutral metal− organic framework. J. Am. Chem. Soc., 129(41), 12368-12369.
33. Gomes Silva, C., Luz, I., Llabrés i Xamena, F. X., Corma, A., & García, H. (2010). Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem-Eur. J., 16(36), 11133-11138.
34. Shekhah, O., Wang, H., Paradinas, M., Ocal, C., Schüpbach, B., Terfort, A., ... & Wöll, C. (2009). Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nature materials, 8(6), 481.
35. Feng, D., Chung, W. C., Wei, Z., Gu, Z. Y., Jiang, H. L., Chen, Y. P., ... & Zhou, H. C. (2013). Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J. Am. Chem. Soc., 135(45), 17105-17110.
36. Deria, P., Mondloch, J. E., Karagiaridi, O., Bury, W., Hupp, J. T., & Farha, O. K. (2014). Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem. Soc. Rev., 43(16), 5896-5912.
37. Halper, S. R., Do, L., Stork, J. R., & Cohen, S. M. (2006). Topological control in heterometallic metal− organic frameworks by anion templating and metalloligand design. J. Am. Chem. Soc., 128(47), 15255-15268.
38. Batten, S. R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., ... & Reedijk, J. (2013). Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem., 85(8), 1715-1724.
39. Robson, R. (2008). Design and its limitations in the construction of bi-and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view. Dalton T., (38), 5113-5131.
40. Xamena, F. X. L., Abad, A., Corma, A., & Garcia, H. (2007). MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. J. Catal., 250(2), 294-298.
41. Givaja, G., Amo-Ochoa, P., Gómez-García, C. J., & Zamora, F. (2012). Electrical conductive coordination polymers. Chem. Soc. Rev., 41(1), 115-147.
42. O’Keeffe, M. (2009). Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem. Soc. Rev., 38(5), 1215-1217.
43. Henninger, S. K., Habib, H. A., & Janiak, C. (2009). MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc., 131(8), 2776-2777.
44. Fromm, K. M. (2008). Coordination polymer networks with s-block metal ions. Coordin. Chem. Rev., 252(8-9), 856-885.
45. Papaefstathiou, G. S., & MacGillivray, L. R. (2003). Inverted metal–organic frameworks: solid-state hosts with modular functionality. Coordin. Chem. Rev., 246(1-2), 169-184.
46. Keskin, S., & Kızılel, S. (2011). Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res. , 50(4), 1799-1812.
47. Tanabe, K. K., Wang, Z., & Cohen, S. M. (2008). Systematic functionalization of a metal− organic framework via a postsynthetic modification approach. J. Am. Chem. Soc., 130(26), 8508-8517.
48. Zhao, D., Yuan, D., Sun, D., & Zhou, H. C. (2009). Stabilization of metal− organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. J. Am. Chem. Soc., 131(26), 9186-9188.
49. Li, Q., Zhang, W., Miljanić, O. Š., Sue, C. H., Zhao, Y. L., Liu, L., ... & Yaghi, O. M. (2009). Docking in metal-organic frameworks. Science, 325(5942), 855-859.
50. Sheberla, D., Sun, L., Blood-Forsythe, M. A., Er, S., Wade, C. R., Brozek, C. K., ... & Dincă, M. (2014). High electrical conductivity in Ni3 (2, 3, 6, 7, 10, 11-hexaiminotriphenylene) 2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc., 136(25), 8859-8862.
51. Surblé, S., Serre, C., Mellot-Draznieks, C., Millange, F., & Férey, G. (2006). A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun. , (3), 284-286.
52. Evans, J. D., Sumby, C. J., & Doonan, C. J. (2014). Post-synthetic metalation of metal–organic frameworks. Chem. Soc. Rev., 43(16), 5933-5951.
53. Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect‐engineered metal–organic frameworks. Angew. Chem. Int. Ed., 54(25), 7234-7254.
54. Allendorf, M. D., Schwartzberg, A., Stavila, V., & Talin, A. A. (2011). A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions. Chem-Eur. J., 17(41), 11372-11388.
55. Kwon, H. T., & Jeong, H. K. (2013). In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc., 135(29), 10763-10768.
56. Pichon, A., Lazuen-Garay, A., & James, S. L. (2006). Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm, 8(3), 211-214.
57. Du, M., Zhang, Z. H., Tang, L. F., Wang, X. G., Zhao, X. J., & Batten, S. R. (2007). Molecular Tectonics of Metal–Organic Frameworks (MOFs): A Rational Design Strategy for Unusual Mixed‐Connected Network Topologies. Chem-Eur. J., 13(9), 2578-2586.
58. Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Commercial metal–organic frameworks as heterogeneous catalysts. Chem. Commun. , 48(92), 11275-11288.
59. Thomas, K. M. (2009). Adsorption and desorption of hydrogen on metal–organic framework materials for storage applications: comparison with other nanoporous materials. Dalton T., (9), 1487-1505.
60. Jeong, N. C., Samanta, B., Lee, C. Y., Farha, O. K., & Hupp, J. T. (2011). Coordination-chemistry control of proton conductivity in the iconic metal–organic framework material HKUST-1. J. Am. Chem. Soc., 134(1), 51-54.
61. Salunkhe, R. R., Kaneti, Y. V., Kim, J., Kim, J. H., & Yamauchi, Y. (2016). Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications. Accounts Chem. Res., 49(12), 2796-2806.
62. Yang, C. X., Ren, H. B., & Yan, X. P. (2013). Fluorescent metal–organic framework MIL-53 (Al) for highly selective and sensitive detection of Fe3+ in aqueous solution. Anal. Chem., 85(15), 7441-7446.
63. Kan, W. Q., Liu, B., Yang, J., Liu, Y. Y., & Ma, J. F. (2012). A series of highly connected metal–organic frameworks based on triangular ligands and d10 metals: syntheses, structures, photoluminescence, and photocatalysis. Cryst. Growth Des., 12(5), 2288-2298.
64. Cohen, S. M. (2010). Modifying MOFs: new chemistry, new materials. Chem. Sci., 1(1), 32-36.
65. Furukawa, H., Müller, U., & Yaghi, O. M. (2015). “Heterogeneity within order” in metal–organic frameworks. Angew. Chem. International Edition, 54(11), 3417-3430.
66. Han, Q., He, C., Zhao, M., Qi, B., Niu, J., & Duan, C. (2013). Engineering chiral polyoxometalate hybrid metal–organic frameworks for asymmetric dihydroxylation of olefins. J. Am. Chem. Soc., 135(28), 10186-10189.
67. Yang, E. C., Zhao, H. K., Ding, B., Wang, X. G., & Zhao, X. J. (2007). Four Novel Three-Dimensional Triazole-Based Zinc (II) Metal− Organic Frameworks Controlled by the Spacers of Dicarboxylate Ligands: Hydrothermal Synthesis, Crystal Structure, and Luminescence Properties. Cryst. Growth Des., 7(10), 2009-2015.
68. Jiang, H. L., Feng, D., Liu, T. F., Li, J. R., & Zhou, H. C. (2012). Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal–organic frameworks. J. Am. Chem. Soc., 134(36), 14690-14693.
69. Wu, M. X., & Yang, Y. W. (2017). Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy. Adv. Mate., 29(23), 1606134.
70. Lan, Y. Q., Li, S. L., Wang, X. L., Shao, K. Z., Du, D. Y., Zang, H. Y., & Su, Z. M. (2008). Self-assembly of polyoxometalate-based metal organic frameworks based on octamolybdates and copper-organic units: from CuII, CuI, II to CuI via changing organic amine. Inorg. chem., 47(18), 8179-8187.
71. Brozek, C. K., & Dincă, M. (2013). Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr-and Fe-MOF-5. J. Am. Chem. Soc., 135(34), 12886-12891.
72. Guillerm, V., Weseliński, Ł. J., Belmabkhout, Y., Cairns, A. J., D'elia, V., Wojtas, Ł., ... & Eddaoudi, M. (2014). Discovery and introduction of a (3, 18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nature chemistry, 6(8), 673.
73. Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catal. Sci. Technol., 1(6), 856-867.
74. Alezi, D., Belmabkhout, Y., Suyetin, M., Bhatt, P. M., Weseliński, Ł. J., Solovyeva, V., ... & Eddaoudi, M. (2015). MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc., 137(41), 13308-13318.
75. Dzubak, A. L., Lin, L. C., Kim, J., Swisher, J. A., Poloni, R., Maximoff, S. N., ... & Gagliardi, L. (2012). Ab initio carbon capture in open-site metal–organic frameworks. Nature chemistry, 4(10), 810.
76. Klinowski, J., Paz, F. A. A., Silva, P., & Rocha, J. (2011). Microwave-assisted synthesis of metal–organic frameworks. Dalton T., 40(2), 321-330.
77. Wang, D., Xie, T., Peng, Q., & Li, Y. (2008). Ag, Ag2S, and Ag2Se nanocrystals: synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc., 130(12), 4016-4022.
78. Goto, Y., Sato, H., Shinkai, S., & Sada, K. (2008). “Clickable” metal− organic framework. J. Am. Chem. Soc., 130(44), 14354-14355.
79. Cui, G. H., He, C. H., Jiao, C. H., Geng, J. C., & Blatov, V. A. (2012). Two metal–organic frameworks with unique high-connected binodal network topologies: synthesis, structures, and catalytic properties. CrystEngComm, 14(12), 4210-4216.
80. Delgado-Friedrichs, O., Foster, M. D., O’Keeffe, M., Proserpio, D. M., Treacy, M. M., & Yaghi, O. M. (2005). What do we know about three-periodic nets?. J. olid State Chem., 178(8), 2533-2554.
81. Kim, M., & Cohen, S. M. (2012). Discovery, development, and functionalization of Zr (IV)-based metal–organic frameworks. CrystEngComm, 14(12), 4096-4104.
82. Stassen, I., Burtch, N., Talin, A., Falcaro, P., Allendorf, M., & Ameloot, R. (2017). An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev., 46(11), 3185-3241.
83. Ye, Q., Wang, X. S., Zhao, H., & Xiong, R. G. (2005). Highly stable olefin–Cu (I) coordination oligomers and polymers. Chem. Soc. Rev., 34(3), 208-225.
84. Marleny Rodriguez-Albelo, L., Ruiz-Salvador, A. R., Sampieri, A., Lewis, D. W., Gómez, A., Nohra, B., ... & Ngo Biboum, R. (2009). Zeolitic polyoxometalate-based metal− organic frameworks (Z-POMOFs): Computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. J. Am. Chem. Soc., 131(44), 16078-16087.
85. Cao, D., Lan, J., Wang, W., & Smit, B. (2009). Lithium‐doped 3D covalent organic frameworks: high‐capacity hydrogen storage materials. Angew. Chem. International Edition, 48(26), 4730-4733.
86. Bennett, T. D., & Cheetham, A. K. (2014). Amorphous metal–organic frameworks. Accounts Chem. Res., 47(5), 1555-1562.
87. Fei, H., Shin, J., Meng, Y. S., Adelhardt, M., Sutter, J., Meyer, K., & Cohen, S. M. (2014). Reusable oxidation catalysis using metal-monocatecholato species in a robust metal–organic framework. J. Am. Chem. Soc., 136(13), 4965-4973.
88. Li, H. Y., Wei, Y. L., Dong, X. Y., Zang, S. Q., & Mak, T. C. (2015). Novel Tb-MOF embedded with viologen species for multi-photofunctionality: photochromism, photomodulated fluorescence, and luminescent pH sensing. Chem. Mater., 27(4), 1327-1331.
89. Fang, Q. R., Yuan, D. Q., Sculley, J., Li, J. R., Han, Z. B., & Zhou, H. C. (2010). Functional mesoporous metal− organic frameworks for the capture of heavy metal ions and size-selective catalysis. Inorg. chem., 49(24), 11637-11642.
90. Fang, Q. R., Zhu, G. S., Xue, M., Zhang, Q. L., Sun, J. Y., Guo, X. D., ... & Wei, Y. (2006). Microporous metal–organic framework constructed from heptanuclear zinc carboxylate secondary building units. Chem-Eur. J., 12(14), 3754-3758.
91. Shearer, G. C., Chavan, S., Bordiga, S., Svelle, S., Olsbye, U., & Lillerud, K. P. (2016). Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater., 28(11), 3749-3761.
92. Zhang, Y. B., Furukawa, H., Ko, N., Nie, W., Park, H. J., Okajima, S., ... & Yaghi, O. M. (2015). Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal–organic framework-177. J. Am. Chem. Soc., 137(7), 2641-2650.
93. Genna, D. T., Wong-Foy, A. G., Matzger, A. J., & Sanford, M. S. (2013). Heterogenization of homogeneous catalysts in metal–organic frameworks via cation exchange. J. Am. Chem. Soc., 135(29), 10586-10589.
94. Koh, K., Wong-Foy, A. G., & Matzger, A. J. (2009). MOF@ MOF: microporous core–shell architectures. Chem. Commun. , (41), 6162-6164.
95. Doherty, C. M., Buso, D., Hill, A. J., Furukawa, S., Kitagawa, S., & Falcaro, P. (2013). Using functional nano-and microparticles for the preparation of metal–organic framework composites with novel properties. Accounts Chem. Res., 47(2), 396-405.
96. Jeremias, F., Khutia, A., Henninger, S. K., & Janiak, C. (2012). MIL-100 (Al, Fe) as water adsorbents for heat transformation purposes—a promising application. J. Mater. Chem., 22(20), 10148-10151.
97. Houk, R. J., Jacobs, B. W., Gabaly, F. E., Chang, N. N., Talin, A. A., Graham, D. D., ... & Allendorf, M. D. (2009). Silver cluster formation, dynamics, and chemistry in metal− organic frameworks. Nano Lett., 9(10), 3413-3418.
98. Li, S., & Huo, F. (2015). Metal–organic framework composites: from fundamentals to applications. Nanoscale, 7(17), 7482-7501.
99. Dhakshinamoorthy, A., Opanasenko, M., Čejka, J., & Garcia, H. (2013). Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups. Adv. Synth. Catal., 355(2‐3), 247-268.
100. Rosi, N. L., Eddaoudi, M., Kim, J., O’Keeffe, M., & Yaghi, O. M. (2002). Advances in the chemistry of metal-organic frameworks. CrystEngComm, 4(68), 401-404.
101. Zou, R. Q., Zhong, R. Q., Du, M., Kiyobayashi, T., & Xu, Q. (2007). Highly-thermostable metal–organic frameworks (MOFs) of zinc and cadmium 4, 4′-(hexafluoroisopropylidene) diphthalates with a unique fluorite topology. Chem. Commun. , (24), 2467-2469.
102. Yang, G. P., Hou, L., Luan, X. J., Wu, B., & Wang, Y. Y. (2012). Molecular braids in metal–organic frameworks. Chem. Soc. Rev., 41(21), 6992-7000.
103. Sindoro, M., Yanai, N., Jee, A. Y., & Granick, S. (2013). Colloidal-sized metal–organic frameworks: synthesis and applications. Accounts Chem. Res., 47(2), 459-469.
104. Hermes, S., Schröder, F., Amirjalayer, S., Schmid, R., & Fischer, R. A. (2006). Loading of porous metal–organic open frameworks with organometallic CVD precursors: inclusion compounds of the type [L n M] a@ MOF-5. J. Mater. Chem., 16(25), 2464-2472.
105. Wang, T. C., Bury, W., Gómez-Gualdrón, D. A., Vermeulen, N. A., Mondloch, J. E., Deria, P., ... & Stoddart, J. F. (2015). Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J. Am. Chem. Soc., 137(10), 3585-3591.
106. Sun, D., Ma, S., Ke, Y., Petersen, T. M., & Zhou, H. C. (2005). Synthesis, characterization, and photoluminescence of isostructural Mn, Co, and Zn MOFs having a diamondoid structure with large tetrahedral cages and high thermal stability. Chem. Commun. , (21), 2663-2665.
107. Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115.
108. Tong, M., Liu, D., Yang, Q., Devautour-Vinot, S., Maurin, G., & Zhong, C. (2013). Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. J. Mater. Chem. A, 1(30), 8534-8537.
109. Luz, I., i Xamena, F. L., & Corma, A. (2010). Bridging homogeneous and heterogeneous catalysis with MOFs:“Click” reactions with Cu-MOF catalysts. J. Catal., 276(1), 134-140.
110. Baburin, I. A., Blatov, V. A., Carlucci, L., Ciani, G., & Proserpio, D. M. (2008). Interpenetrated three-dimensional hydrogen-bonded networks from metal–organic molecular and one-or two-dimensional polymeric motifs. CrystEngComm, 10(12), 1822-1838.
111. Trickett, C. A., Helal, A., Al-Maythalony, B. A., Yamani, Z. H., Cordova, K. E., & Yaghi, O. M. (2017). The chemistry of metal–organic frameworks for CO 2 capture, regeneration and conversion. Nature Rev. Mater., 2(8), 17045.
112. Islamoglu, T., Goswami, S., Li, Z., Howarth, A. J., Farha, O. K., & Hupp, J. T. (2017). Postsynthetic tuning of metal–organic frameworks for targeted applications. Accounts Chem. Res., 50(4), 805-813.
113. Wu, H., Yildirim, T., & Zhou, W. (2013). Exceptional mechanical stability of highly porous zirconium metal–organic framework UiO-66 and its important implications. The J. P. Chem. Lett., 4(6), 925-930.
114. Maia, J. D. C., Urquiza Carvalho, G. A., Mangueira Jr, C. P., Santana, S. R., Cabral, L. A. F., & Rocha, G. B. (2012). GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations. J. Chem. Theory Comput., 8(9), 3072-3081.
115. Oisaki, K., Li, Q., Furukawa, H., Czaja, A. U., & Yaghi, O. M. (2010). A Metal− organic framework with covalently bound organometallic complexes. J. Am. Chem. Soc., 132(27), 9262-9264.
116. Raccuglia, P., Elbert, K. C., Adler, P. D., Falk, C., Wenny, M. B., Mollo, A., ... & Norquist, A. J. (2016). Machine-learning-assisted materials discovery using failed experiments. Nature, 533(7601), 73.
117. Xue, D. X., Belmabkhout, Y., Shekhah, O., Jiang, H., Adil, K., Cairns, A. J., & Eddaoudi, M. (2015). Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J. Am. Chem. Soc., 137(15), 5034-5040.
118. Feng, D., Gu, Z. Y., Chen, Y. P., Park, J., Wei, Z., Sun, Y., ... & Zhou, H. C. (2014). A highly stable porphyrinic zirconium metal–organic framework with shp-a topology. J. Am. Chem. Soc., 136(51), 17714-17717.
119. Na, K., Choi, K. M., Yaghi, O. M., & Somorjai, G. A. (2014). Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett., 14(10), 5979-5983.
120. McGuire, C. V., & Forgan, R. S. (2015). The surface chemistry of metal–organic frameworks. Chem. Commun. , 51(25), 5199-5217.
121. Haldoupis, E., Nair, S., & Sholl, D. S. (2012). Finding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point charges. J. Am. Chem. Soc., 134(9), 4313-4323.
122. Kirillov, A. M. (2011). Hexamethylenetetramine: an old new building block for design of coordination polymers. Coordin. Chem. Rev., 255(15-16), 1603-1622.
123. Khan, N. A., & Jhung, S. H. (2015). Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coordin. Chem. Rev., 285, 11-23.
124. Zou, R., Abdel-Fattah, A. I., Xu, H., Zhao, Y., & Hickmott, D. D. (2010). Storage and separation applications of nanoporous metal–organic frameworks. CrystEngComm, 12(5), 1337-1353.
125. Sun, L., Miyakai, T., Seki, S., & Dincă, M. (2013). Mn2 (2, 5-disulfhydrylbenzene-1, 4-dicarboxylate): A Microporous Metal–Organic Framework with Infinite (− Mn–S−)∞ Chains and High Intrinsic Charge Mobility. J. Am. Chem. Soc., 135(22), 8185-8188.
126. Tranchemontagne, D. J., Park, K. S., Furukawa, H., Eckert, J., Knobler, C. B., & Yaghi, O. M. (2012). Hydrogen storage in new metal–organic frameworks. The J. Phy. Chem. -C, 116(24), 13143-13151.
127. Fan, J., Zhu, H. F., Okamura, T. A., Sun, W. Y., Tang, W. X., & Ueyama, N. (2003). Novel one-dimensional tubelike and two-dimensional polycatenated metal− organic frameworks. Inorg. chem., 42(1), 158-162.
128. Decadt, R., Van Hecke, K., Depla, D., Leus, K., Weinberger, D., Van Driessche, I., ... & Van Deun, R. (2012). Synthesis, crystal structures, and luminescence properties of carboxylate based rare-earth coordination polymers. Inorg. chem., 51(21), 11623-11634.
129. Li, K., Olson, D. H., Lee, J. Y., Bi, W., Wu, K., Yuen, T., ... & Li, J. (2008). Multifunctional Microporous MOFs Exhibiting Gas/Hydrocarbon Adsorption Selectivity, Separation Capability and Three‐Dimensional Magnetic Ordering. A. Funct. Mater., 18(15), 2205-2214.
130. Costa, J. S., Gamez, P., Black, C. A., Roubeau, O., Teat, S. J., & Reedijk, J. (2008). Chemical modification of a bridging ligand inside a metal–organic framework while maintaining the 3D structure. Eur. J. Inorg. chem., 2008(10), 1551-1554.
131. Fei, H., & Cohen, S. M. (2015). Metalation of a thiocatechol-functionalized Zr (IV)-based metal–organic framework for selective C–H functionalization. J. Am. Chem. Soc., 137(6), 2191-2194.
132. Park, S. S., Hontz, E. R., Sun, L., Hendon, C. H., Walsh, A., Van Voorhis, T., & Dincă, M. (2015). Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal–organic frameworks. J. Am. Chem. Soc., 137(5), 1774-1777.
133. Wang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L. F., Tian, L., ... & Ni, Z. H. (2009). Co (II) metal− organic frameworks (MOFs) assembled from asymmetric semirigid multicarboxylate ligands: synthesis, crystal structures, and magnetic properties. Cryst. Growth Des., 9(12), 5273-5282.
134. Di Nicola, C., Karabach, Y. Y., Kirillov, A. M., Monari, M., Pandolfo, L., Pettinari, C., & Pombeiro, A. J. (2007). Supramolecular assemblies of trinuclear triangular copper (II) secondary building units through hydrogen bonds. Generation of different metal− organic frameworks, valuable catalysts for peroxidative oxidation of alkanes. Inorg. chem., 46(1), 221-230.
135. Cui, P., Wu, J., Zhao, X., Sun, D., Zhang, L., Guo, J., & Sun, D. (2011). Two solvent-dependent zinc (II) supramolecular isomers: rare kgd and lonsdaleite network topologies based on a tripodal flexible ligand. Cryst. Growth Des., 11(12), 5182-5187.
136. Petit, C., & Bandosz, T. J. (2012). Exploring the coordination chemistry of MOF–graphite oxide composites and their applications as adsorbents. Dalton T., 41(14), 4027-4035.
137. Arslan, H. K., Shekhah, O., Wohlgemuth, J., Franzreb, M., Fischer, R. A., & Wöll, C. (2011). High‐Throughput Fabrication of Uniform and Homogenous MOF Coatings. A. Funct. Mater., 21(22), 4228-4231.
138. Reinsch, H., van der Veen, M. A., Gil, B., Marszalek, B., Verbiest, T., De Vos, D., & Stock, N. (2012). Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chem. Mater., 25(1), 17-26.
139. Bai, Z. Q., Yuan, L. Y., Zhu, L., Liu, Z. R., Chu, S. Q., Zheng, L. R., ... & Shi, W. Q. (2015). Introduction of amino groups into acid-resistant MOFs for enhanced U (VI) sorption. J. Mater. Chem. A, 3(2), 525-534.
140. Colodrero, R. M., Papathanasiou, K. E., Stavgianoudaki, N., Olivera-Pastor, P., Losilla, E. R., Aranda, M. A., ... & García-Ruiz, J. M. (2012). Multifunctional luminescent and proton-conducting lanthanide carboxyphosphonate open-framework hybrids exhibiting crystalline-to-amorphous-to-crystalline transformations. Chem. Mater., 24(19), 3780-3792.
141. Ahmed, I., & Jhung, S. H. (2016). Adsorptive desulfurization and denitrogenation using metal-organic frameworks. J. Hazard. Mater., 301, 259-276.
142. Stork, J. R., Thoi, V. S., & Cohen, S. M. (2007). Rare examples of transition-metal− main-group metal heterometallic metal− organic frameworks from gallium and indium dipyrrinato complexes and silver salts: synthesis and framework variability. Inorg. Chem., 46(26), 11213-11223.
143. Jiang, J., Zhao, Y., & Yaghi, O. M. (2016). Covalent chemistry beyond molecules. J. Am. Chem. Soc., 138(10), 3255-3265.
144. Trickett, C. A., Gagnon, K. J., Lee, S., Gándara, F., Bürgi, H. B., & Yaghi, O. M. (2015). Definitive molecular level characterization of defects in UiO‐66 crystals. Angew. Chem. Int. Ed., 54(38), 11162-11167.
145. Liu, T. F., Zou, L., Feng, D., Chen, Y. P., Fordham, S., Wang, X., ... & Zhou, H. C. (2014). Stepwise synthesis of robust metal–organic frameworks via postsynthetic metathesis and oxidation of metal nodes in a single-crystal to single-crystal transformation. J. Am. Chem. Soc., 136(22), 7813-7816.
146. Song, X., Kim, T. K., Kim, H., Kim, D., Jeong, S., Moon, H. R., & Lah, M. S. (2012). Post-synthetic modifications of framework metal ions in isostructural metal–organic frameworks: Core–shell heterostructures via selective transmetalations. Chem. Mater., 24(15), 3065-3073.
147. Brozek, C. K., & Dincă, M. (2012). Lattice-imposed geometry in metal–organic frameworks: lacunary Zn 4 O clusters in MOF-5 serve as tripodal chelating ligands for Ni 2+. Chem. Sci., 3(6), 2110-2113.
148. Zou, J. P., Peng, Q., Wen, Z., Zeng, G. S., Xing, Q. J., & Guo, G. C. (2010). Two Novel Metal− Organic Frameworks (MOFs) with (3, 6)-Connected Net Topologies: Syntheses, Crystal Structures, Third-Order Nonlinear Optical and Luminescent Properties. Cryst. Growth Des., 10(6), 2613-2619.
149. Feng, D., Wang, K., Su, J., Liu, T. F., Park, J., Wei, Z., ... & Zhou, H. C. (2015). A highly stable zeotype mesoporous zirconium metal–organic framework with ultralarge pores. Angew. Chem., 127(1), 151-156.
150. Forgan, R. S., Smaldone, R. A., Gassensmith, J. J., Furukawa, H., Cordes, D. B., Li, Q., ... & Stoddart, J. F. (2011). Nanoporous carbohydrate metal–organic frameworks. J. Am. Chem. Soc., 134(1), 406-417.
151. Maniam, P., & Stock, N. (2011). Investigation of porous Ni-based metal–organic frameworks containing paddle-wheel type inorganic building units via high-throughput methods. Inorg. Chem., 50(11), 5085-5097.
152. Luo, F., Zheng, J. M., & Batten, S. R. (2007). Unprecedented (3, 4)-connected metal–organic frameworks (MOFs) with 3-fold interpenetration and considerable solvent-accessible void space. Chem. Commun. , (36), 3744-3746.
153. Li, H., Zhu, Z., Zhang, F., Xie, S., Li, H., Li, P., & Zhou, X. (2011). Palladium nanoparticles confined in the cages of MIL-101: an efficient catalyst for the one-pot indole synthesis in water. ACS Catal., 1(11), 1604-1612.
154. Wang, Y., Yang, J., Liu, Y. Y., & Ma, J. F. (2013). Controllable syntheses of porous metal–organic frameworks: Encapsulation of LnIII cations for tunable luminescence and small drug molecules for efficient delivery. Chem-Eur. J., 19(43), 14591-14599.
155. Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as solid acid catalysts for acetalization of aldehydes with methanol. Adv. Synth. Catal., 352(17), 3022-3030.
156. Feng, D., Jiang, H. L., Chen, Y. P., Gu, Z. Y., Wei, Z., & Zhou, H. C. (2013). Metal–Organic Frameworks Based on Previously Unknown Zr8/Hf8 Cubic Clusters. Inorg. chem., 52(21), 12661-12667.
157. Karmakar, A., Desai, A. V., & Ghosh, S. K. (2016). Ionic metal-organic frameworks (iMOFs): Design principles and applications. Coordin. Chem. Rev., 307, 313-341.
158. Gu, Z. G., Zhan, C., Zhang, J., & Bu, X. (2016). Chiral chemistry of metal–camphorate frameworks. Chem. Soc. Rev., 45(11), 3122-3144.
159. Cohen, S. M. (2017). The postsynthetic renaissance in porous solids. J. Am. Chem. Soc., 139(8), 2855-2863.
160. Zhang, H., Osgood, H., Xie, X., Shao, Y., & Wu, G. (2017). Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy, 31, 331-350.
161. Sarkisov, L., Martin, R. L., Haranczyk, M., & Smit, B. (2014). On the flexibility of metal–organic frameworks. J. Am. Chem. Soc., 136(6), 2228-2231.
162. Yang, G. P., Hou, L., Ma, L. F., & Wang, Y. Y. (2013). Investigation on the prime factors influencing the formation of entangled metal–organic frameworks. CrystEngComm, 15(14), 2561-2578.
163. Xiang, Z., Mercado, R., Huck, J. M., Wang, H., Guo, Z., Wang, W., ... & Smit, B. (2015). Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc., 137(41), 13301-13307.
164. Köberl, M., Cokoja, M., Herrmann, W. A., & Kühn, F. E. (2011). From molecules to materials: Molecular paddle-wheel synthons of macromolecules, cage compounds and metal–organic frameworks. Dalton T., 40(26), 6834-6859.
165. Konstas, K., Osl, T., Yang, Y., Batten, M., Burke, N., Hill, A. J., & Hill, M. R. (2012). Methane storage in metal organic frameworks. J. Mater. Chem., 22(33), 16698-16708.
166. Chang, Z., Zhang, D. S., Chen, Q., Li, R. F., Hu, T. L., & Bu, X. H. (2011). Rational construction of 3D pillared metal–organic frameworks: synthesis, structures, and hydrogen adsorption properties. Inorg. Chem., 50(16), 7555-7562.
167. Kuc, A., Enyashin, A., & Seifert, G. (2007). Metal− organic frameworks: structural, energetic, electronic, and mechanical properties. The J. Phys. Chem. B, 111(28), 8179-8186.
168. Gutov, O. V., Hevia, M. G., Escudero-Adán, E. C., & Shafir, A. (2015). Metal–organic framework (MOF) defects under control: insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks. Inorg. Chem., 54(17), 8396-8400.
169. Wu, Y. Y., Yang, C. X., & Yan, X. P. (2014). Fabrication of metal–organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls. Journal of Chromatography A, 1334, 1-8.
170. Schwarzer, A., Saplinova, T., & Kroke, E. (2013). Tri-s-triazines (s-heptazines)—from a “mystery molecule” to industrially relevant carbon nitride materials. Coordin. Chem. Rev., 257(13-14), 2032-2062.
171. Maiti, S., Pramanik, A., Manju, U., & Mahanty, S. (2015). Reversible lithium storage in manganese 1, 3, 5-benzenetricarboxylate metal–organic framework with high capacity and rate performance. ACS Appl. Mater. Inter., 7(30), 16357-16363.
172. Carlucci, L., Ciani, G., Maggini, S., Proserpio, D. M., & Visconti, M. (2010). Heterometallic Modular Metal–Organic 3D Frameworks Assembled via New Tris‐β‐Diketonate Metalloligands: Nanoporous Materials for Anion Exchange and Scaffolding of Selected Anionic Guests. Chem-Eur. J., 16(41), 12328-12341.
173. Ravon, U., Domine, M. E., Gaudillere, C., Desmartin-Chomel, A., & Farrusseng, D. (2008). MOFs as acid catalysts with shape selectivity properties. New J. Chem., 32(6), 937-940.
174. He, J., Yee, K. K., Xu, Z., Zeller, M., Hunter, A. D., Chui, S. S. Y., & Che, C. M. (2011). Thioether side chains improve the stability, fluorescence, and metal uptake of a metal–organic framework. Chem. Mater., 23(11), 2940-2947.
175. Bloch, W. M., Burgun, A., Coghlan, C. J., Lee, R., Coote, M. L., Doonan, C. J., & Sumby, C. J. (2014). Capturing snapshots of post-synthetic metallation chemistry in metal–organic frameworks. Nature Chem., 6(10), 906.
176. Zybaylo, O., Shekhah, O., Wang, H., Tafipolsky, M., Schmid, R., Johannsmann, D., & Wöll, C. (2010). A novel method to measure diffusion coefficients in porous metal–organic frameworks. Phys. Chem. Chem. Phy., 12(28), 8093-8098.
177. Garibay, S. J., Wang, Z., & Cohen, S. M. (2010). Evaluation of Heterogeneous Metal− Organic Framework Organocatalysts Prepared by Postsynthetic Modification. Inorg. chem., 49(17), 8086-8091.
178. Zou, C., & Wu, C. D. (2012). Functional porphyrinic metal–organic frameworks: crystal engineering and applications. Dalton T., 41(14), 3879-3888.
179. Deria, P., Bury, W., Hupp, J. T., & Farha, O. K. (2014). Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chem. Commun. , 50(16), 1965-1968.
180. Zhan, S. Z., Li, M., Ng, S. W., & Li, D. (2013). Luminescent Metal–Organic Frameworks (MOFs) as a Chemopalette: Tuning the Thermochromic Behavior of Dual‐Emissive Phosphorescence by Adjusting the Supramolecular Microenvironments. Chem-Eur. J., 19(31), 10217-10225.
181. Alhamami, M., Doan, H., & Cheng, C. H. (2014). A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption. Materials, 7(4), 3198-3250.
182. Eubank, J. F., Mouttaki, H., Cairns, A. J., Belmabkhout, Y., Wojtas, L., Luebke, R., ... & Eddaoudi, M. (2011). The quest for modular nanocages: tbo-MOF as an archetype for mutual substitution, functionalization, and expansion of quadrangular pillar building blocks. J. Am. Chem. Soc., 133(36), 14204-14207.
183. Wang, Y., Zhao, M., Ping, J., Chen, B., Cao, X., Huang, Y., ... & Lu, Q. (2016). Bioinspired design of ultrathin 2D bimetallic metal–organic‐framework nanosheets used as biomimetic enzymes. Adv. Mate., 28(21), 4149-4155.
184. Zhai, Q. G., Mao, C., Zhao, X., Lin, Q., Bu, F., Chen, X., ... & Feng, P. (2015). Cooperative crystallization of heterometallic indium–chromium metal–organic polyhedra and their fast proton conductivity. Angew. Chem. Inter. Ed., 54(27), 7886-7890.
185. Safarifard, V., & Morsali, A. (2015). Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coordin. Chem. Rev., 292, 1-14.
186. Prasad, T. K., & Suh, M. P. (2012). Control of Interpenetration and Gas‐Sorption Properties of Metal–Organic Frameworks by a Simple Change in Ligand Design. Chem-Eur. J., 18(28), 8673-8680.
187. Chun, H., Jung, H., & Seo, J. (2009). Isoreticular metal-organic polyhedral networks based on 5-connecting paddlewheel motifs. Inorg. Chem., 48(5), 2043-2047.
188. Doonan, C., Ricco, R., Liang, K., Bradshaw, D., & Falcaro, P. (2017). Metal–organic frameworks at the biointerface: synthetic strategies and applications. Accounts Chem. Res., 50(6), 1423-1432.
189. Seoane, B., Castellanos, S., Dikhtiarenko, A., Kapteijn, F., & Gascon, J. (2016). Multi-scale crystal engineering of metal organic frameworks. Coordin. Chem. Rev., 307, 147-187.
190. Vermoortele, F., Ameloot, R., Alaerts, L., Matthessen, R., Carlier, B., Fernandez, E. V. R., ... & De Vos, D. E. (2012). Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. J. Mater. Chem., 22(20), 10313-10321.
191. Spanopoulos, I., Tsangarakis, C., Klontzas, E., Tylianakis, E., Froudakis, G., Adil, K., ... & Trikalitis, P. N. (2016). Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J. Am. Chem. Soc., 138(5), 1568-1574.
192. Shi, Z., Wang, Y., Lin, H., Zhang, H., Shen, M., Xie, S., ... & Tang, Y. (2016). Porous nanoMoC@ graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A, 4(16), 6006-6013.
193. Sun, D., Ke, Y., Mattox, T. M., Parkin, S., & Zhou, H. C. (2006). Stability and porosity enhancement through concurrent ligand extension and secondary building unit stabilization. Inorg. Chem., 45(19), 7566-7568.
194. Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade reactions catalyzed by metal organic frameworks. ChemSusChem, 7(9), 2392-2410.
195. D'Vries, R. F., Álvarez-García, S., Snejko, N., Bausá, L. E., Gutiérrez-Puebla, E., de Andrés, A., & Monge, M. Á. (2013). Multimetal rare earth MOFs for lighting and thermometry: tailoring color and optimal temperature range through enhanced disulfobenzoic triplet phosphorescence. J. Mater. Chem. C, 1(39), 6316-6324.
196. Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Appl. Catal. A: Gen., 378(1), 19-25.
197. Qin, Y. Y., Zhang, J., Li, Z. J., Zhang, L., Cao, X. Y., & Yao, Y. G. (2008). Organically templated metal–organic framework with 2-fold interpenetrated {3 3. 5 9. 6 3}-lcy net. Chem. Commun. , (22), 2532-2534.
198. Liu, C. M., Gao, S., Zhang, D. Q., & Zhu, D. B. (2007). Three-dimensional eight-or four-connected metal− organic frameworks tuned by hydrothermal temperatures. Cryst. Growth Des., 7(7), 1312-1317.
199. Mitchell, L., Gonzalez-Santiago, B., Mowat, J. P., Gunn, M. E., Williamson, P., Acerbi, N., ... & Wright, P. A. (2013). Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100 (Sc) for C–C and C [double bond, length as m-dash] N bond-forming reactions. Catal. Sci. Technol., 3(3), 606-617.
200. He, J., Zhang, Y., Pan, Q., Yu, J., Ding, H., & Xu, R. (2006). Three metal-organic frameworks prepared from mixed solvents of DMF and HAc. Microporous Mesoporous Mater., 90(1-3), 145-152.
201. Esfahani, H., Tavasoli, K & Jabbarzadeh, A. (2019). Big data and social media: A scientometrics analysis. International Journal of Data and Network Science, 3(3), 145-164.
202. Salimi, D., Tavasoli, K., Gilani, E., Jouyandeh, M & Sadjadi, S. (2019). The impact of social media on marketing using bibliometrics analysis. International Journal of Data and Network Science, 3(3), 165-184.
202. Alavi, S., Mehdinezhad, I & Kahshidinia, B. (2019). A trend study on the impact of social media on advertisement. International Journal of Data and Network Science, 3(3), 185-200.
203. Gilani, E., Salimi, D., Jouyandeh, M., Tavasoli, K & Wong, W. (2019). A trend study on the impact of social media in decision making. International Journal of Data and Network Science, 3(3), 201-222.
https://www.nanoshel.com/metal-organic-frameworks