How to cite this paper
Sadjadi, S & Naimi-Jamal, M. (2019). A survey on application of mesoporous materials in chemistry.Current Chemistry Letters, 8(2), 69-86.
Refrences
1. Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., ... & Unger, K. K. (1994). Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem., 66(8), 1739-1758.
2. Eftekhari, A., & Fan, Z. (2017). Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Mat. Chem. Front., 1(6), 1001-1027.
3. Asefa, T., MacLachlan, M. J., Coombs, N., & Ozin, G. A. (1999). Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 402(6764), 867.
4. Wang, Y., Wang, X., & Antonietti, M. (2012). Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Edit., 51(1), 68-89.
5. Rolison, D. R. (2003). Catalytic nanoarchitectures--the importance of nothing and the unimportance of periodicity. Science, 299(5613), 1698-1701.
6. Crepaldi, E. L., Soler-Illia, G. J. D. A., Grosso, D., Cagnol, F., Ribot, F., & Sanchez, C. (2003). Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. J. Am. Chem. Soc., 125(32), 9770-9786.
7. Sayari, A., & Hamoudi, S. (2001). Periodic mesoporous silica-based organic− inorganic nanocomposite materials. Chem. Matl., 13(10), 3151-3168.
8. Zhao, X. S., Lu, G. Q., & Millar, G. J. (1996). Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res., 35(7), 2075-2090.
9. Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities. Angew. Chem. Int. Edit., 43(44), 5980-5984.
10. Descalzo, A. B., Martínez‐Máñez, R., Sancenon, F., Hoffmann, K., & Rurack, K. (2006). The supramolecular chemistry of organic–inorganic hybrid materials. Angew. Chem. Int. Edit., 45(36), 5924-5948.
11. Indrakanti, V. P., Kubicki, J. D., & Schobert, H. H. (2009). Photoinduced activation of CO 2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2(7), 745-758.
12. Vallet‐Regí, M. (2006). Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem.–Eur. J., 12(23), 5934-5943.
13. Angelos, S., Yang, Y. W., Patel, K., Stoddart, J. F., & Zink, J. I. (2008). pH‐responsive supramolecular nanovalves based on cucurbit [6] uril pseudorotaxanes. Angew. Chem., 120(12), 2254-2258.
14. Park, C., Oh, K., Lee, S. C., & Kim, C. (2007). Controlled release of guest molecules from mesoporous silica particles based on a pH‐responsive polypseudorotaxane motif. Angew. Chem. Int. Edit., 46(9), 1455-1457.
15. Landers, J., Gor, G. Y., & Neimark, A. V. (2013). Density functional theory methods for characterization of porous materials. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 437, 3-32.
16. Lin, H. P., & Mou, C. Y. (2002). Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts Chem. Res., 35(11), 927-935.
17. Salonen, J., Kaukonen, A. M., Hirvonen, J., & Lehto, V. P. (2008). Mesoporous silicon in drug delivery applications. J. of pharm. Sci., 97(2), 632-653.
18. Chal, R., Gerardin, C., Bulut, M., & Van Donk, S. (2011). Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 3(1), 67-81.
19. Arends, I. W., Sheldon, R. A., Wallau, M., & Schuchardt, U. (1997). Oxidative transformations of organic compounds mediated by redox molecular sieves. Angew. Chemie Int. Edit., 36(11), 1144-1163.
20. Arcos, D., & Vallet-Regí, M. (2010). Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater,, 6(8), 2874-2888.
21. Wan, Y., Yang, H., & Zhao, D. (2006). “Host− Guest” chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Accounts Chem. Res., 39(7), 423-432.
22. Yokoi, T., Yoshitake, H., & Tatsumi, T. (2004). Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di-and tri-amino-organoalkoxysilanes. J. of Mater. Chem., 14(6), 951-957.
23. Lee, C. H., Lin, T. S., & Mou, C. Y. (2009). Mesoporous materials for encapsulating enzymes. Nano today, 4(2), 165-179.
24. Grosso, D., Boissière, C., Smarsly, B., Brezesinski, T., Pinna, N., Albouy, P. A., ... & Sanchez, C. (2004). Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nat. Mater., 3(11), 787.
25. Papaefstathiou, G. S., & MacGillivray, L. R. (2003). Inverted metal–organic frameworks: solid-state hosts with modular functionality. Coordin. Chem. Rev., 246(1-2), 169-184.
26. Karimi, B., Abedi, S., Clark, J. H., & Budarin, V. (2006). Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels of SBA‐15 in Stabilizing Palladium Nanoparticles. Angew. Chem. Int. Edit., 45(29), 4776-4779.
27. Wilson, K., & Clark, J. H. (2000). Solid acids and their use as environmentally friendly catalysts in organic synthesis. Pure Appl. Chem., 72(7), 1313-1319.
28. Walcarius, A., Etienne, M., & Lebeau, B. (2003). Rate of access to the binding sites in organically modified silicates. 2. Ordered mesoporous silicas grafted with amine or thiol groups. Chem. Mater., 15(11), 2161-2173.
29. Clearfield, A. (1998). Organically pillared micro-and mesoporous materials. Chem. of Mater., 10(10), 2801-2810.
30. Chen, C., Geng, J., Pu, F., Yang, X., Ren, J., & Qu, X. (2011). Polyvalent Nucleic Acid/Mesoporous Silica Nanoparticle Conjugates: Dual Stimuli‐Responsive Vehicles for Intracellular Drug Delivery. Angew. Chem. Int. Ent., 50(4), 882-886.
31. Boissiere, C., Grosso, D., Chaumonnot, A., Nicole, L., & Sanchez, C. (2011). Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv. Mater., 23(5), 599-623.
32. Moreau, J. J., Vellutini, L., Chi Man, M. W., Bied, C., Bantignies, J. L., Dieudonné, P., & Sauvajol, J. L. (2001). Self-organized hybrid silica with long-range ordered lamellar structure. J. Am. Chem. Soc., 123(32), 7957-7958.
33. Weitkamp, J., Hunger, M., & Rymsa, U. (2001). Base catalysis on Micropor. Mesopor. Mat.: recent progress and perspectives. Micropor. Mesopor. Mat., 48(1-3), 255-270.
34. Nguyen, T. D., Leung, K. C. F., Liong, M., Pentecost, C. D., Stoddart, J. F., & Zink, J. I. (2006). Construction of a pH-driven supramolecular nanovalve. Org. Lett., 8(15), 3363-3366.
35. Thomas, J. M., & Raja, R. (2008). Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Accounts Chem. Res., 41(6), 708-720.
36. Zhao, D., Peidong, Y., & Qisheng, H. (1998). Topological construction of mesoporous materials. Curr. Opin. Solid St. M. 3(1), 111-121.
37. Hartmann, M., Kullmann, S., & Keller, H. (2010). Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J. Mater. Chem., 20(41), 9002-9017.
38. Khushalani, D., Kuperman, A., Ozin, G. A., Tanaka, K., Coombs, N., Olken, M. M., & Garcés, J. (1995). Metamorphic materials: restructuring siliceous mesoporous materials. Adv. Mater., 7(10), 842-846.
39. Hoffmann, F., & Fröba, M. (2011). Vitalising porous inorganic silica networks with organic functions—PMOs and related hybrid materials. Chem. Soc. Rev., 40(2), 608-620.
40. Wang, D., Xie, T., Peng, Q., & Li, Y. (2008). Ag, Ag2S, and Ag2Se nanocrystals: synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc., 130(12), 4016-4022.
41. Yu, J., Cui, Y., Wu, C., Yang, Y., Wang, Z., O'Keeffe, M., ... & Qian, G. (2012). Second‐order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal–organic framework. Angew. Chem-Ger Edit, 124(42), 10694-10697.
42. Casasús, R., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., ... & Ruiz, E. (2008). Dual aperture control on pH-and anion-driven supramolecular nanoscopic hybrid gate-like ensembles. J. Am. Chem. Soc., 130(6), 1903-1917.
43. Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., ... & Amoros, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sci., 2(4), 405-420.
44. Jérôme, F., Pouilloux, Y., & Barrault, J. (2008). Rational design of solid catalysts for the selective use of glycerol as a natural organic building block. Chem. Sus. Chem., 1(7), 586-613.
45. Cundy, C. S. (1998). Microwave techniques in the synthesis and modification of zeolite catalysts. A review. Collect. Czech. Chem. C., 63(11), 1699-1723.
46. Qiu, L. G., Xu, T., Li, Z. Q., Wang, W., Wu, Y., Jiang, X., ... & Zhang, L. D. (2008). Hierarchically Micro‐and Mesoporous Metal–Organic Frameworks with Tunable Porosity. Angew. Chem-Ger Edit, 120(49), 9629-9633.
47. Ariga, K., Vinu, A., Hill, J. P., & Mori, T. (2007). Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 251(21-24), 2562-2591.
48. Sanchez, C., Galo, J., Ribot, F., & Grosso, D. (2003). Design of functional nano-structured materials through the use of controlled hybrid organic–inorganic interfaces. Comptes Rendus Chimie, 6(8-10), 1131-1151.
49. Soler‐Illia, G. D. A., & Innocenzi, P. (2006). Mesoporous hybrid thin films: The physics and chemistry beneath. Chem.–A Europ. J., 12(17), 4478-4494.
50. Braunstein, P. (2004). Functional ligands and complexes for new structures, homogeneous catalysts and nanomaterials. J. Organom. Chgem., 689(24), 3953-3967.
51. Bernardos, A., Aznar, E., Marcos, M. D., Martínez‐Máñez, R., Sancenón, F., Soto, J., ... & Amorós, P. (2009). Enzyme‐responsive controlled release using mesoporous silica supports capped with lactose. Angew. Chem-Ger Edit, 121(32), 5998-6001.
52. Budarin, V., Clark, J. H., Hardy, J. J., Luque, R., Milkowski, K., Tavener, S. J., & Wilson, A. J. (2006). Starbons: New starch‐derived mesoporous carbonaceous materials with tunable properties. Angew. Chem-Ger Edit, 118(23), 3866-3870.
53. Soler-Illia, G. J., & Azzaroni, O. (2011). Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem. Soc. Rev., 40(2), 1107-1150.
54. Fang, Q. R., Yuan, D. Q., Sculley, J., Li, J. R., Han, Z. B., & Zhou, H. C. (2010). Functional mesoporous metal− organic frameworks for the capture of heavy metal ions and size-selective catalysis. Inorg. Chem., 49(24), 11637-11642.
55. Ozin, G. A., Hou, K., Lotsch, B. V., Cademartiri, L., Puzzo, D. P., Scotognella, F., ... & Thomson, J. (2009). Nanofabrication by self-assembly. Mater. Today, 12(5), 12-23.
56. Han, Y., Li, D., Zhao, L., Song, J., Yang, X., Li, N., ... & Meng, X. (2003). High‐Temperature Generalized Synthesis of Stable Ordered Mesoporous Silica‐Based Materials by Using Fluorocarbon–Hydrocarbon Surfactant Mixtures. Angew. Chem-Ger Edit, 115(31), 3761-3765.
57. Karimi, B., Biglari, A., Clark, J. H., & Budarin, V. (2007). Green, Transition‐Metal‐Free Aerobic Oxidation of Alcohols Using a Highly Durable Supported Organocatalyst. Angew. Chem. Int. Ent., 46(38), 7210-7213.
58. Botterhuis, N. E., Sun, Q., Magusin, P. C., Van Santen, R. A., & Sommerdijk, N. A. (2006). Hollow silica spheres with an ordered pore structure and their application in controlled release studies. Chem.–A Europ. J., 12(5), 1448-1456.
59. Zhu, Y., & Fujiwara, M. (2007). Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled‐release nanosystem. Angew. Chem. Int. Ent., 46(13), 2241-2244.
60. Burleigh, M. C., Markowitz, M. A., Spector, M. S., & Gaber, B. P. (2001). Amine-functionalized periodic mesoporous organosilicas. Chem. Mater., 13(12), 4760-4766.
61. Holland, B. T., Isbester, P. K., Blanford, C. F., Munson, E. J., & Stein, A. (1997). Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors. J. Am. Chem. Soc., 119(29), 6796-6803.
62. Spitler, E. L., Colson, J. W., Uribe‐Romo, F. J., Woll, A. R., Giovino, M. R., Saldivar, A., & Dichtel, W. R. (2012). Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew. Chem-Ger Edit, 124(11), 2677-2681.
63. Liu, J., Shin, Y., Nie, Z., Chang, J. H., Wang, L. Q., Fryxell, G. E., ... & Exarhos, G. J. (2000). Molecular assembly in ordered mesoporosity: A new class of highly functional nanoscale materials. The J. of Physical Chem. A, 104(36), 8328-8339.
64. Fischbach, A., Klimpel, M. G., Widenmeyer, M., Herdtweck, E., Scherer, W., & Anwander, R. (2004). Stereospecific Polymerization of Isoprene with Molecular and MCM‐48‐Grafted Lanthanide (III) Tetraalkylaluminates. Angew. Chem-Ger Edit, 116(17), 2284-2289.
65. Behrens, P. (1993). Mesoporous inorganic solids. Adv. Mater., 5(2), 127-132.
66. MacLachlan, M. J., Asefa, T., & Ozin, G. A. (2000). Writing on the wall with a new synthetic quill. Chem.–A Europ.J., 6(14), 2507-2511.
67. Erlebacher, J., & Seshadri, R. (2009). Hard materials with tunable porosity. Mrs Bulletin, 34(8), 561-568.
68. Ghanbari-Siahkali, A., Philippou, A., Dwyer, J., & Anderson, M. W. (2000). The acidity and catalytic activity of heteropoly acid on MCM-41 investigated by MAS NMR, FTIR and catalytic tests. Appl. Catal. B-Gen., 192(1), 57-69.
69. Kelly, J. A., Giese, M., Shopsowitz, K. E., Hamad, W. Y., & MacLachlan, M. J. (2014). The development of chiral nematic mesoporous materials. Accounts Chem. Res., 47(4), 1088-1096.
70. Zou, R., Abdel-Fattah, A. I., Xu, H., Zhao, Y., & Hickmott, D. D. (2010). Storage and separation applications of nanoporous metal–organic frameworks. CrystEngComm, 12(5), 1337-1353.
71. Li, X. H., Wang, X., & Antonietti, M. (2012). Solvent-free and metal-free oxidation of toluene using O2 and g-C3N4 with nanopores: nanostructure boosts the catalytic selectivity. Acs Catalysis, 2(10), 2082-2086.
72. Huang, Y., Cai, H., Yu, T., Zhang, F., Zhang, F., Meng, Y., ... & Zhao, D. (2007). Formation of Mesoporous Carbon With a Face‐Centered‐Cubic Fd ̄3 m Structure and Bimodal Architectural Pores From the Reverse Amphiphilic Triblock Copolymer PPO‐PEO‐PPO. Angew. Chem-Ger Edit, 119(7), 1107-1111.
73. Kilian, K. A., Böcking, T., & Gooding, J. J. (2009). The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem. Commun., (6), 630-640.
74. Kanatzidis, M. G. (2007). Beyond silica: Nonoxidic mesostructured materials. Adv. Mater., 19(9), 1165-1181.
75. Kandambeth, S., Shinde, D. B., Panda, M. K., Lukose, B., Heine, T., & Banerjee, R. (2013). Enhancement of Chemical Stability and Crystallinity in Porphyrin‐Containing Covalent Organic Frameworks by Intramolecular Hydrogen Bonds. Angew. Chem. Int. Ent., 52(49), 13052-13056.
76. Chen, S., Duan, J., Tang, Y., & Zhang Qiao, S. (2013). Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chemistry–A European Journal, 19(22), 7118-7124.
77. Xu, W., Riikonen, J., & Lehto, V. P. (2013). Mesoporous systems for poorly soluble drugs. Int. J. Pharm., 453(1), 181-197.
78. Qian, K. K., & Bogner, R. H. (2012). Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. J Pharm. Sci., 101(2), 444-463.
79. Goettmann, F., & Sanchez, C. (2007). How does confinement affect the catalytic activity of mesoporous materials?. J. Mater. Chem., 17(1), 24-30.
80. Kresge, C. T., & Roth, W. J. (2013). The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev., 42(9), 3663-3670.
81. Vallet-Regí, M., Balas, F., Colilla, M., & Manzano, M. (2008). Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog. Solid State. Ch., 36(3), 163-191.
82. Zeng, W., Qian, X. F., Zhang, Y. B., Yin, J., & Zhu, Z. K. (2005). Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system. Mater. Res. Bull., 40(5), 766-772.
83. Feng, D., Wang, K., Su, J., Liu, T. F., Park, J., Wei, Z., ... & Zhou, H. C. (2015). A highly stable zeotype mesoporous zirconium metal–organic framework with ultralarge pores. Angew. Chem. Int. Ent., 54(1), 149-154.
84. Ros‐Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez‐Máñez, R., ... & Garró, N. (2008). A mesoporous 3D hybrid material with dual functionality for Hg2+ detection and adsorption. Chem.–A Europ. J., 14(27), 8267-8278.
85. Climent, E., Marcos, M. D., Martínez‐Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The determination of methylmercury in real samples using organically capped mesoporous inorganic materials capable of signal amplification. Angew. Chem-Ger Edit, 121(45), 8671-8674.
86. Cabrera, S., El Haskouri, J., Beltrán-Porter, A., Beltrán-Porter, D., Marcos, M. D., & Amorós, P. (2000). Enhanced surface area in thermally stable pure mesoporous TiO2. Solid State Sci., 2(5), 513-518.
87. Wang, J., Johnston-Peck, A. C., & Tracy, J. B. (2009). Nickel phosphide nanoparticles with hollow, solid, and amorphous structures. Chem. Mater., 21(19), 4462-4467.
88. Salonen, J., & Lehto, V. P. (2008). Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem. Eng. J., 137(1), 162-172.
89. Polarz, S., Orlov, A. V., Schüth, F., & Lu, A. H. (2007). Preparation of High‐Surface‐Area Zinc Oxide with Ordered Porosity, Different Pore Sizes, and Nanocrystalline Walls. Chem.–A Europ. J., 13(2), 592-597.
90. Zareyee, D., & Karimi, B. (2007). A novel and highly efficient method for the silylation of alcohols with hexamethyldisilazane (HMDS) catalyzed by recyclable sulfonic acid-functionalized ordered nanoporous silica. Tetrahedron Lett., 48(7), 1277-1280.
91. Jia, M., Seifert, A., Berger, M., Giegengack, H., Schulze, S., & Thiel, W. R. (2004). Hybrid mesoporous materials with a uniform ligand distribution: synthesis, characterization, and application in epoxidation catalysis. Chem. Mater., 16(5), 877-882.
92. Zhou, W., & Fu, H. (2013). Mesoporous TiO2: preparation, doping, and as a composite for photocatalysis. ChemCatChem, 5(4), 885-894.
93. Zhang, H., Sun, J., Ma, D., Weinberg, G., Su, D. S., & Bao, X. (2006). Engineered complex emulsion system: toward modulating the pore length and morphological architecture of mesoporous silicas. The J. of Phys. Chem. B, 110(51), 25908-25915.
94. Erathodiyil, N., Ooi, S., Seayad, A. M., Han, Y., Lee, S. S., & Ying, J. Y. (2008). Palladium nanoclusters supported on propylurea‐modified siliceous mesocellular foam for coupling and hydrogenation reactions. Chem.–A Europ. J., 14(10), 3118-3125.
95. Budarin, V., Luque, R., Macquarrie, D. J., & Clark, J. H. (2007). Towards a bio‐based industry: benign catalytic esterifications of succinic acid in the presence of water. Chem.–A Europ. J., 13(24), 6914-6919.
96. Dapurkar, S. E., Badamali, S. K., & Selvam, P. (2001). Nanosized metal oxides in the mesopores of MCM-41 and MCM-48 silicates. Catal. Today, 68(1-3), 63-68.
97. Qu, F., Zhu, G., Huang, S., Li, S., & Qiu, S. (2006). Effective controlled release of captopril by silylation of mesoporous MCM‐41. Chemphyschem: a European journal of chemical physics and physical chemistry, 7(2), 400-406.
98. Brégeault, J. M., Vennat, M., Salles, L., Piquemal, J. Y., Mahha, Y., Briot, E., ... & Thouvenot, R. (2006). From polyoxometalates to polyoxoperoxometalates and back again; potential applications. J. Molec. Catal. A: Chem., 250(1-2), 177-189.
99. Brunel, D., Cauvel, A., Di Renzo, F., Fajula, F., Fubini, B., Onida, B., & Garrone, E. (2000). Preferential grafting of alkoxysilane coupling agents on the hydrophobic portion of the surface of micelle-templated silica. New J. Chem., 24(10), 807-813.
100. Innocenzi, P., Malfatti, L., Kidchob, T., & Falcaro, P. (2009). Order− Disorder in self-assembled mesostructured silica films: a concepts review. Chem. Mater., 21(13), 2555-2564.
101. Fryxell, G. E., Mattigod, S. V., Lin, Y., Wu, H., Fiskum, S., Parker, K., ... & Liu, J. (2007). Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): The importance of ligand posture in functional nanomaterials. J. Mater. Chem., 17(28), 2863-2874.
102. Huq, R., Mercier, L., & Kooyman, P. J. (2001). Incorporation of cyclodextrin into mesostructured silica. Chem. Mater., 13(12), 4512-4519.
103. Sun, J., & Bao, X. (2008). Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts. Chem.–A Europ. J., 14(25), 7478-7488.
104. Yuan, S., Sheng, Q., Zhang, J., Chen, F., Anpo, M., & Zhang, Q. (2005). Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Micropor. Mesopor. Mat., 79(1-3), 93-99.
105. Wirnsberger, G., Yang, P., Scott, B. J., Chmelka, B. F., & Stucky, G. D. (2001). Mesostructured materials for optical applications: from low-k dielectrics to sensors and lasers. Spectrochimica Acta A, 57(10), 2049-2060.
106. Sheldon, R. A., Arends, I., & Hanefeld, U. (2007). Green Chem. and catalysis. John Wiley & Sons.
107. Sanchez, C., Lebeau, B., Ribot, F., & In, M. (2000). Molecular design of sol-gel derived hybrid organic-inorganic nanocomposites. J Sol.-Gel. Sci. Techn., 19(1-3), 31-38.
108. Boissière, C., Nicole, L., Gervais, C., Babonneau, F., Antonietti, M., Amenitsch, H., ... & Grosso, D. (2006). Nanocrystalline mesoporous γ-alumina powders “UPMC1 Material” gathers thermal and chemical stability with high surface area. Chem. Mater., 18(22), 5238-5243.
109. Luo, Z., Poyraz, A. S., Kuo, C. H., Miao, R., Meng, Y., Chen, S. Y., ... & Suib, S. L. (2014). Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater., 27(1), 6-17.
110. Qi, C., Zhu, Y. J., Zhao, X. Y., Lu, B. Q., Tang, Q. L., Zhao, J., & Chen, F. (2013). Highly Stable Amorphous Calcium Phosphate Porous Nanospheres: Microwave‐Assisted Rapid Synthesis Using ATP as Phosphorus Source and Stabilizer, and Their Application in Anticancer Drug Delivery. Chem.–A Europ. J., 19(3), 981-987.
111. Qiu, H., & Che, S. (2011). Chiral mesoporous silica: Chiral construction and imprinting via cooperative self-assembly of amphiphiles and silica precursors. Chem. Soc. Rev., 40(3), 1259-1268.
112. Sun, Y. L., Yang, B. J., Zhang, S. X. A., & Yang, Y. W. (2012). Cucurbit [7] uril Pseudorotaxane‐Based Photoresponsive Supramolecular Nanovalve. Chem.–A Europ. J., 18(30), 9212-9216.
113. Nicole, L., Rozes, L., & Sanchez, C. (2010). Integrative approaches to hybrid multifunctional materials: from multidisciplinary research to applied technologies. Adv. Mater., 22(29), 3208-3214.
114. Brinker, C. J., & Dunphy, D. R. (2006). Morphological control of surfactant-templated metal oxide films. Curr. Opin. Colloid In, 11(2-3), 126-132.
115. Schoedel, A., Wojtas, L., Kelley, S. P., Rogers, R. D., Eddaoudi, M., & Zaworotko, M. J. (2011). Network Diversity through Decoration of Trigonal‐Prismatic Nodes: Two‐Step Crystal Engineering of Cationic Metal–Organic Materials. Angew. Chem-Ger Edit, 123(48), 11623-11626.
116. Yang, Z., Lu, Y., & Yang, Z. (2009). Mesoporous materials: tunable structure, morphology and composition. Chem. Commun., (17), 2270-2277.
117. Yang, Q., Ma, S., Li, J., Xiao, F., & Xiong, H. (2006). A water-compatible, highly active and reusable PEG-coated mesoporous silica-supported palladium complex and its application in Suzuki coupling reactions. Chem. Commun., (23), 2495-2497.
118. Kinnari, P., Mäkilä, E., Heikkilä, T., Salonen, J., Hirvonen, J., & Santos, H. A. (2011). Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. Int. J. Pharm., 414(1-2), 148-156.
119. Bernardos, A., Aznar, E., Coll, C., Martínez-Mañez, R., Barat, J. M., Marcos, M. D., ... & Soto, J. (2008). Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. J. Control Release, 131(3), 181-189.
120. Luque, R., Budarin, V., Clark, J. H., & Macquarrie, D. J. (2008). Glycerol transformations on polysaccharide derived mesoporous materials. Applied Catalysis B: Environmental, 82(3-4), 157-162.
121. Ciampi, S., Böcking, T., Kilian, K. A., Harper, J. B., & Gooding, J. J. (2008). Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters. Langmuir, 24(11), 5888-5892.
122. Hartmann, S., Brandhuber, D., & Hüsing, N. (2007). Glycol-modified silanes: novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials. Accounts Chem. Res., 40(9), 885-894.
123. Fryxell, G. E. (2006). The synthesis of functional mesoporous materials. Inorg. Chem. Communications, 9(11), 1141-1150.
124. White, R. J., Brun, N., Budarin, V. L., Clark, J. H., & Titirici, M. M. (2014). Always look on the “light” side of life: sustainable carbon aerogels. ChemSusChem, 7(3), 670-689.
125. Sinha, A. K., & Suzuki, K. (2005). Three‐Dimensional Mesoporous Chromium Oxide: A Highly Efficient Material for the Elimination of Volatile Organic Compounds. Angew. Chem. Int. Ent., 44(2), 271-273.
126. Shi, J. Y., Wang, C. A., Li, Z. J., Wang, Q., Zhang, Y., & Wang, W. (2011). Heterogeneous organocatalysis at work: functionalization of hollow periodic mesoporous organosilica spheres with MacMillan catalyst. Chem.–A Europ. J., 17(22), 6206-6213.
127. Cheng, K., & Landry, C. C. (2007). Diffusion-based deprotection in mesoporous materials: a strategy for differential functionalization of porous silica particles. J. Am. Chem. Soc., 129(31), 9674-9685.
128. Lindén, M., Schacht, S., Schüth, F., Steel, A., & Unger, K. K. (1998). Recent advances in nano-and macroscale control of hexagonal, mesoporous materials. J. Porous Mat, 5(3-4), 177-193.
129. Li, G., Bhosale, S., Wang, T., Zhang, Y., Zhu, H., & Fuhrhop, J. H. (2003). Gram‐Scale Synthesis of Submicrometer‐Long Polythiophene Wires in Mesoporous Silica Matrices. Angew. Chem. Int. Ent., 42(32), 3818-3821.
130. Ciriminna, R., Hesemann, P., Moreau, J. J., Carraro, M., Campestrini, S., & Pagliaro, M. (2006). Aerobic oxidation of alcohols in carbon dioxide with silica‐supported ionic liquids doped with perruthenate. Chem.–A Europ. J., 12(20), 5220-5224.
131. Gong, B., Peng, Q., Jur, J. S., Devine, C. K., Lee, K., & Parsons, G. N. (2011). Sequential vapor infiltration of metal oxides into sacrificial polyester fibers: shape replication and controlled porosity of microporous/mesoporous oxide monoliths. Chem. Mater., 23(15), 3476-3485.
132. Miao, S., & Shanks, B. H. (2009). Esterification of biomass pyrolysis model acids over sulfonic acid-functionalized mesoporous silicas. Appl. Catal. B-Gen., 359(1-2), 113-120.
133. Zhou, Y., Tan, L. L., Li, Q. L., Qiu, X. L., Qi, A. D., Tao, Y., & Yang, Y. W. (2014). Acetylcholine‐triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors. Chem.–A Europ. J., 20(11), 2998-3004.
134. Jaramillo, T. F., Baeck, S. H., Kleiman‐Shwarsctein, A., & McFarland, E. W. (2004). Combinatorial electrochemical synthesis and screening of mesoporous ZnO for photocatalysis. Macromol. Rapid comm., 25(1), 297-301.
135. Wellmann, H., Rathousky, J., Wark, M., Zukal, A., & Schulz-Ekloff, G. (2001). Formation of CdS nanoparticles within functionalized siliceous MCM-41. Micropor. Mesopor. Mat., 44, 419-425.
136. David, A. E., Wang, N. S., Yang, V. C., & Yang, A. J. (2006). Chemically surface modified gel (CSMG): an excellent enzyme-immobilization matrix for industrial processes. J. Biotech., 125(3), 395-407.
137. Zhou, Z., & Hartmann, M. (2012). Recent progress in biocatalysis with enzymes immobilized on mesoporous hosts. Topics Catal., 55(16-18), 1081-1100.
138. Malvi, B., Sarkar, B. R., Pati, D., Mathew, R., Ajithkumar, T. G., & Gupta, S. S. (2009). “Clickable” SBA-15 mesoporous materials: synthesis, characterization and their reaction with alkynes. J. Mater. Chem., 19(10), 1409-1416.
139. Kessel, S., Thomas, A., & Börner, H. G. (2007). Mimicking biosilicification: programmed coassembly of peptide–polymer nanotapes and silica. Angew. Chem. Int. Ent., 46(47), 9023-9026.
140. Wang, Y., Bryan, C., Xu, H., Pohl, P., Yang, Y., & Brinker, C. J. (2002). Interface chemistry of nanostructured materials: Ion adsorption on mesoporous alumina. J. Coll. Interf. Sci, 254(1), 23-30.
141. Gimenez, R., Lydon, D. P., & Serrano, J. L. (2002). Metallomesogens: a promise or a fact?. Curr. Opin. Solid St. M. 6(6), 527-535.
142. Miao, R., Luo, Z., Zhong, W., Chen, S. Y., Jiang, T., Dutta, B., ... & Suib, S. L. (2016). Mesoporous TiO 2 modified with carbon quantum dots as a high-performance visible light photocatalyst. App. Catal. B-Environ. 189, 26-38.
143. Zhang, L., Cha, D., & Wang, P. (2012). Remotely controllable liquid marbles. Adv. Mater., 24(35), 4756-4760.
144. Masters, A. F., & Maschmeyer, T. (2011). Zeolites–From curiosity to cornerstone. Micropor. Mesopor. Mat., 142(2-3), 423-438.
145. Mondal, J., Modak, A., & Bhaumik, A. (2011). Highly efficient mesoporous base catalyzed Knoevenagel condensation of different aromatic aldehydes with malononitrile and subsequent noncatalytic Diels–Alder reactions. J. Molec. Catal. A: Chem., 335(1-2), 236-241.
146. Freund, C., Abrantes, M., & Kühn, F. E. (2006). Monomeric cyclopentadiene molybdenum oxides and their carbonyl precursors as epoxidation catalysts. J. Organom. Chgem., 691(18), 3718-3729.
147. Choudary, B. M., Ramani, T., Maheswaran, H., Prashant, L., Ranganath, K. V. S., & Kumar, K. V. (2006). Catalytic Asymmetric Epoxidation of Unfunctionalised Olefins using Silica, LDH and Resin‐Supported Sulfonato‐Mn (salen) Complex. Adv. synth. Catalysis, 348(4‐5), 493-498.
148. Galarneau, A., Villemot, F., Rodriguez, J., Fajula, F., & Coasne, B. (2014). Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir, 30(44), 13266-13274.
149. Balu, A. M., Budarin, V., Shuttleworth, P. S., Pfaltzgraff, L. A., Waldron, K., Luque, R., & Clark, J. H. (2012). Valorisation of orange peel residues: waste to biochemicals and nanoporous materials. ChemSusChem, 5(9), 1694-1697.
150. Silva, S. S., Duarte, A. R. C., Carvalho, A. P., Mano, J. F., & Reis, R. L. (2011). Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta biomater., 7(3), 1166-1172.
151. Nischang, I., Brüggemann, O., & Teasdale, I. (2011). Facile, Single‐Step Preparation of Versatile, High‐Surface‐Area, Hierarchically Structured Hybrid Materials. Angew. Chem. Int. Ent., 50(20), 4592-4596.
152. Vallet-Regí, M. (2010). Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chimie, 13(1-2), 174-185.
153. Aznar, E., Coll, C., Marcos, M. D., Martínez‐Máñez, R., Sancenon, F., Soto, J., ... & Ruiz, E. (2009). Borate‐driven gatelike scaffolding using mesoporous materials functionalised with saccharides. Chem.–A Europ. J., 15(28), 6877-6888.
154. Gracia, M. J., Losada, E., Luque, R., Campelo, J. M., Luna, D., Marinas, J. M., & Romero, A. A. (2008). Activity of Gallium and Aluminum SBA-15 materials in the Friedel–Crafts alkylation of toluene with benzyl chloride and benzyl alcohol. Appl. Catal. B-Gen., 349(1-2), 148-155.
155. Budarin, V. L., Clark, J. H., Luque, R., Macquarrie, D. J., Koutinas, A., & Webb, C. (2007). Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chem., 9(9), 992-995.
156. Corriu, R. J., Mehdi, A., Reyé, C., & Thieuleux, C. (2003). Control of coordination chemistry in both the framework and the pore channels of mesoporous hybrid materials. New J. Chem., 27(6), 905-908.
157. White, R. J., Budarin, V. L., & Clark, J. H. (2008). Tuneable Mesoporous Materials from α‐d‐Polysaccharides. ChemSusChem: Chemistry & Sustainability Energy & Materials, 1(5), 408-411.
158. Yoshitake, H. (2010). Design of functionalization and structural analysis of organically-modified siliceous oxides with periodic structures for the development of sorbents for hazardous substances. J. Mater. Chem., 20(22), 4537-4550.
159. Wang, D., Osmundsen, C. M., Taarning, E., & Dumesic, J. A. (2013). Selective production of aromatics from alkylfurans over solid acid catalysts. ChemCatChem, 5(7), 2044-2050.
160. Mizoshita, N., Goto, Y., Kapoor, M. P., Shimada, T., Tani, T., & Inagaki, S. (2009). Fluorescence emission from 2, 6‐naphthylene‐bridged mesoporous organosilicas with an amorphous or crystal‐like framework. Chem.–A Europ. J., 15(1), 219-226.
161. Fischer, A., Makowski, P., Müller, J. O., Antonietti, M., Thomas, A., & Goettmann, F. (2008). High‐Surface‐Area TiO2 and TiN as Catalysts for the C-C Coupling of Alcohols and Ketones. ChemSusChem: Chemistry & Sustainability Energy & Materials, 1(5), 444-449.
162. Goettmann, F., Moores, A., Boissière, C., Le Floch, P., & Sanchez, C. (2005). A selective chemical sensor based on the plasmonic response of phosphinine‐stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small, 1(6), 636-639.
163. Garcia-Bennett, A. E. (2011). Synthesis, toxicology and potential of ordered mesoporous materials in nanomedicine. Nanomedicine, 6(5), 867-877.
164. Su, D. S., Delgado, J. J., Liu, X., Wang, D., Schlögl, R., Wang, L., ... & Xiao, F. S. (2009). Highly ordered mesoporous carbon as catalyst for oxidative dehydrogenation of ethylbenzene to styrene. Chem.–An Asian J., 4(7), 1108-1113.
165. Guo, W., Wang, J., Lee, S. J., Dong, F., Park, S. S., & Ha, C. S. (2010). A general pH‐responsive supramolecular nanovalve based on mesoporous organosilica hollow nanospheres. Chem.–A Europ. J., 16(29), 8641-8646.
166. White, R. J., Budarin, V. L., & Clark, J. H. (2010). Pectin‐Derived Porous Materials. Chem.–A Europ. J., 16(4), 1326-1335.
167. Nowotny, M., Pedersen, L. N., Hanefeld, U., & Maschmeyer, T. (2002). Increasing the ketone selectivity of the cobalt‐catalyzed radical chain oxidation of cyclohexane. Chem.–A Europ. J., 8(16), 3724-3731.
168. Campbell, A. S., Dong, C., Meng, F., Hardinger, J., Perhinschi, G., Wu, N., & Dinu, C. Z. (2014). Enzyme catalytic efficiency: a function of bio–nano interface reactions. ACS applied materials & interfaces, 6(8), 5393-5403.
169. Ng, A., Ciampi, S., James, M., Harper, J. B., & Gooding, J. J. (2009). Comparing the reactivity of alkynes and alkenes on silicon (100) surfaces. Langmuir, 25(24), 13934-13941.
170. Valentin, R., Molvinger, K., Viton, C., Domard, A., & Quignard, F. (2005). From hydrocolloids to high specific surface area porous supports for catalysis. Biomacromolecules, 6(5), 2785-2792.
171. Kurth, D. G., Fromm, K. M., & Lehn, J. M. (2001). Hydrogen‐Bonding and Metal‐Ion‐Mediated Self‐Assembly of a Nanoporous Crystal Lattice. Europ. J. of Inorg. Chem., 2001(6), 1523-1526.
172. Bariana, M., Aw, M. S., Kurkuri, M., & Losic, D. (2013). Tuning drug loading and release properties of diatom silica microparticles by surface modifications. Int. J. Pharm., 443(1-2), 230-241.
173. Yang, D., Paul, B., Xu, W., Yuan, Y., Liu, E., Ke, X., ... & Zhu, H. (2010). Alumina nanofibers grafted with functional groups: a new design in efficient sorbents for removal of toxic contaminants from water. Water research, 44(3), 741-750.
174. Pérez‐Quintanilla, D., Gómez‐Ruiz, S., Žižak, Ž., Sierra, I., Prashar, S., del Hierro, I., ... & Kaluđerović, G. N. (2009). A new generation of anticancer drugs: mesoporous materials modified with titanocene complexes. Chem.–A Europ. J., 15(22), 5588-5597.
175. Dufaud, V., Beauchesne, F., & Bonneviot, L. (2005). Organometallic chemistry inside the pore walls of mesostructured silica materials. Angew. Chem. Int. Ent., 44(22), 3475-3477.
176. An, K., Alayoglu, S., Ewers, T., & Somorjai, G. A. (2012). Colloid chemistry of nanocatalysts: A molecular view. J. Coll. Interf. Sci, 373(1), 1-13.
177. Gao, Z., Feng, Y., Cui, F., Hua, Z., Zhou, J., Zhu, Y., & Shi, J. (2011). Pd-loaded superparamagnetic mesoporous NiFe2O4 as a highly active and magnetically separable catalyst for Suzuki and Heck reactions. J. Mol. Catal. A-Chem., 336(1-2), 51-57.
178. González, B., Colilla, M., de Laorden, C. L., & Vallet-Regí, M. (2009). A novel synthetic strategy for covalently bonding dendrimers to ordered mesoporous silica: potential drug delivery applications. J. Mater. Chem., 19(47), 9012-9024.
179. Grosso, D., Babonneau, F., Sanchez, C., de AA Soler-Illia, G. J., Crepaldi, E. L., Albouy, P. A., ... & Brunet-Bruneau, A. (2003). A first insight in the mechanisms involved in the self-assembly of 2D-hexagonal templated SiO2 and TiO2 mesostructured films during dip-coating. J Sol.-Gel. Sci. Techn., 26(1-3), 561-565.
180. Soler‐Illia, G. J. D. A., Rozes, L., Boggiano, M. K., Sanchez, C., Turrin, C. O., Caminade, A. M., & Majoral, J. P. (2000). New mesotextured hybrid materials made from assemblies of dendrimers and titanium (IV)‐oxo‐organo clusters. Angew. Chem-Ger Edit, 112(23), 4419-4424.
181. Du, M., Zhu, P., Yan, X., Su, Y., Song, W., & Li, J. (2011). Honeycomb self‐assembled peptide scaffolds by the breath figure method. Chem.–A Europ. J., 17(15), 4238-4245.
182. Liu, J., Du, X., & Zhang, X. (2011). Enzyme‐Inspired Controlled Release of Cucurbit [7] uril Nanovalves by Using Magnetic Mesoporous Silica. Chem.–A Europ. J., 17(3), 810-815.
183. Anurova, N. A., Blatov, V. A., Ilyushin, G. D., & Proserpio, D. M. (2010). Natural tilings for zeolite-type frameworks. The J. Physic. Chem. C, 114(22), 10160-10170.
184. Kilian, K. A., Böcking, T., Gaus, K., & Gooding, J. J. (2008). Introducing distinctly different chemical functionalities onto the internal and external surfaces of mesoporous materials. Angew. Chem-Ger Edit, 120(14), 2737-2739.
185. Verma, S., Nandi, M., Modak, A., Jain, S. L., & Bhaumik, A. (2011). Novel Organic‐Inorganic Hybrid Mesoporous Silica Supported Oxo‐Vanadium Schiff Base for Selective Oxidation of Alcohols. Adv. synth. Catalysis, 353(11‐12), 1897-1902.
186. Muñoz-Espí, R., Weiss, C. K., & Landfester, K. (2012). Inorganic nanoparticles prepared in miniemulsion. Curr. Opin. Colloid In, 17(4), 212-224.
187. Saini, V. K., Andrade, M., Pinto, M. L., Carvalho, A. P., & Pires, J. (2010). How the adsorption properties get changed when going from SBA-15 to its CMK-3 carbon replica. Sep. Purfic. Technol., 75(3), 366-376.
188. Kuschel, A., Sievers, H., & Polarz, S. (2008). Amino acid silica hybrid materials with mesoporous structure and enantiopure surfaces. Angew. Chem. Int. Ent., 47(49), 9513-9517.
189. Deshpande, A. S., Burgert, I., & Paris, O. (2006). Hierarchically Structured Ceramics by High‐Precision Nanoparticle Casting of Wood. Small, 2(8‐9), 994-998.
190. Agirrezabal-Telleria, I., Requies, J., Güemez, M. B., & Arias, P. L. (2014). Dehydration of d-xylose to furfural using selective and hydrothermally stable arenesulfonic SBA-15 catalysts. App. Catal. B-Environ. 145, 34-42.
191. Thommes, M., Mitchell, S., & Pérez-Ramírez, J. (2012). Surface and pore structure assessment of hierarchical MFI zeolites by advanced water and argon sorption studies. The J. of Physic. Chem. C, 116(35), 18816-18823.
192. Park, S. S., & Ha, C. S. (2006). Organic–inorganic hybrid mesoporous silicas: functionalization, pore size, and morphology control. The Chem. Rec., 6(1), 32-42.
193. Wei, Y., Xu, J., Feng, Q., Lin, M., Dong, H., Zhang, W. J., & Wang, C. (2001). A novel method for enzyme immobilization: direct encapsulation of acid phosphatase in nanoporous silica host materials. J. Nanosci. Nanotechno., 1(1), 83-93.
194. Hartmann, P., Brezesinski, T., Sann, J., Lotnyk, A., Eufinger, J. P., Kienle, L., & Janek, J. (2013). Defect chemistry of oxide nanomaterials with high surface area: ordered mesoporous thin films of the oxygen storage catalyst CeO2–ZrO2. ACS nano, 7(4), 2999-3013.
195. Bohström, Z., Rico-Lattes, I., & Holmberg, K. (2010). Oxidation of cyclohexene into adipic acid in aqueous dispersions of mesoporous oxides with built-in catalytical sites. Green Chem., 12(10), 1861-1869.
196. Kim, Y., Kim, C., & Yi, J. (2004). Synthesis of tailored porous alumina with a bimodal pore size distribution. Mater. Res. Bull., 39(13), 2103-2112.
197. Sinha, A. K., & Suzuki, K. (2007). Novel mesoporous chromium oxide for VOCs elimination. App. Catal. B-Environ. 70(1-4), 417-422.
198. Michailovski, A., & Patzke, G. R. (2006). Hydrothermal synthesis of molybdenum oxide based materials: Strategy and structural chemistry. Chem.–A Europ. J., 12(36), 9122-9134.
199. Bhoware, S. S., Shylesh, S., Kamble, K. R., & Singh, A. P. (2006). Cobalt-containing hexagonal mesoporous molecular sieves (Co-HMS): Synthesis, characterization and catalytic activity in the oxidation reaction of ethylbenzene. J. Mol. Catal. A-Chem., 255(1-2), 123-130.
200. Walcarius, A., Delacote, C., & Sayen, S. (2004). Electrochemical probing of mass transfer rates in mesoporous silica-based organic–inorganic hybrids. Electrochimica acta, 49(22-23), 3775-3783.
201. Sayen, S., Etienne, M., Bessière, J., & Walcarius, A. (2002). Tuning the Sensitivity of Electrodes Modified with an Organic‐Inorganic Hybrid by Tailoring the Structure of the Nanocomposite Material. Electroanal, 14(21), 1521-1525.
202. Garcia‐Martinez, J., Xiao, C., Cychosz, K. A., Li, K., Wan, W., Zou, X., & Thommes, M. (2014). Evidence of intracrystalline mesostructured porosity in zeolites by advanced gas sorption, electron tomography and rotation electron diffraction. ChemCatChem, 6(11), 3110-3115.
203. Esfahani, H., Tavasoli, K., & Jabbarzadeh, A. (2019). Big data and social media: A scientometrics analysis. Int. J. Data Net. Sci, 3(3), 145-164.
204. Salimi, D., Tavasoli, K., Gilani, E., Jouyandeh, M., & Sadjadi, S. (2019). The impact of social media on marketing using bibliometrics analysis. Int. J. Data Net. Sci, 3(3), 165-184.
205. Alavi, S., Mehdinezhad, I., & Kahshidinia, B. (2019). A trend study on the impact of social media on advertisement. Int. J. Data Net. Sci, 3(3), 185-200.
206. Gilani, E., Salimia, D., Jouyandeh, M., Tavasoli, K., & Wong, W. (2019). A trend study on the impact of social media in decision making. Int. J. Data Net. Sci, 3(3), 201-222.
207. Pourkhani, A., Abdipour, K., Baher, B., & Moslehpour, M. (2019). The impact of social media in business growth and performance: A scientometrics analysis. Int. J. Data Net. Sci, 3(3), 223-244.
208. Tayebi, S., Manesh, S., Khalili, M., & Sadi-Nezhad, S. (2019). The role of information systems in communication through social media. Int. J. Data Net. Sci, 3(3), 245-268.
209. Javid, E., Nazari, M., & Ghaeli, M. (2019). Social media and e-commerce: A scientometrics analysis. Int. J. Data Net. Sci., 3(3), 269-290.
2. Eftekhari, A., & Fan, Z. (2017). Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Mat. Chem. Front., 1(6), 1001-1027.
3. Asefa, T., MacLachlan, M. J., Coombs, N., & Ozin, G. A. (1999). Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 402(6764), 867.
4. Wang, Y., Wang, X., & Antonietti, M. (2012). Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Edit., 51(1), 68-89.
5. Rolison, D. R. (2003). Catalytic nanoarchitectures--the importance of nothing and the unimportance of periodicity. Science, 299(5613), 1698-1701.
6. Crepaldi, E. L., Soler-Illia, G. J. D. A., Grosso, D., Cagnol, F., Ribot, F., & Sanchez, C. (2003). Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. J. Am. Chem. Soc., 125(32), 9770-9786.
7. Sayari, A., & Hamoudi, S. (2001). Periodic mesoporous silica-based organic− inorganic nanocomposite materials. Chem. Matl., 13(10), 3151-3168.
8. Zhao, X. S., Lu, G. Q., & Millar, G. J. (1996). Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res., 35(7), 2075-2090.
9. Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities. Angew. Chem. Int. Edit., 43(44), 5980-5984.
10. Descalzo, A. B., Martínez‐Máñez, R., Sancenon, F., Hoffmann, K., & Rurack, K. (2006). The supramolecular chemistry of organic–inorganic hybrid materials. Angew. Chem. Int. Edit., 45(36), 5924-5948.
11. Indrakanti, V. P., Kubicki, J. D., & Schobert, H. H. (2009). Photoinduced activation of CO 2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2(7), 745-758.
12. Vallet‐Regí, M. (2006). Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem.–Eur. J., 12(23), 5934-5943.
13. Angelos, S., Yang, Y. W., Patel, K., Stoddart, J. F., & Zink, J. I. (2008). pH‐responsive supramolecular nanovalves based on cucurbit [6] uril pseudorotaxanes. Angew. Chem., 120(12), 2254-2258.
14. Park, C., Oh, K., Lee, S. C., & Kim, C. (2007). Controlled release of guest molecules from mesoporous silica particles based on a pH‐responsive polypseudorotaxane motif. Angew. Chem. Int. Edit., 46(9), 1455-1457.
15. Landers, J., Gor, G. Y., & Neimark, A. V. (2013). Density functional theory methods for characterization of porous materials. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 437, 3-32.
16. Lin, H. P., & Mou, C. Y. (2002). Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts Chem. Res., 35(11), 927-935.
17. Salonen, J., Kaukonen, A. M., Hirvonen, J., & Lehto, V. P. (2008). Mesoporous silicon in drug delivery applications. J. of pharm. Sci., 97(2), 632-653.
18. Chal, R., Gerardin, C., Bulut, M., & Van Donk, S. (2011). Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 3(1), 67-81.
19. Arends, I. W., Sheldon, R. A., Wallau, M., & Schuchardt, U. (1997). Oxidative transformations of organic compounds mediated by redox molecular sieves. Angew. Chemie Int. Edit., 36(11), 1144-1163.
20. Arcos, D., & Vallet-Regí, M. (2010). Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater,, 6(8), 2874-2888.
21. Wan, Y., Yang, H., & Zhao, D. (2006). “Host− Guest” chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Accounts Chem. Res., 39(7), 423-432.
22. Yokoi, T., Yoshitake, H., & Tatsumi, T. (2004). Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di-and tri-amino-organoalkoxysilanes. J. of Mater. Chem., 14(6), 951-957.
23. Lee, C. H., Lin, T. S., & Mou, C. Y. (2009). Mesoporous materials for encapsulating enzymes. Nano today, 4(2), 165-179.
24. Grosso, D., Boissière, C., Smarsly, B., Brezesinski, T., Pinna, N., Albouy, P. A., ... & Sanchez, C. (2004). Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nat. Mater., 3(11), 787.
25. Papaefstathiou, G. S., & MacGillivray, L. R. (2003). Inverted metal–organic frameworks: solid-state hosts with modular functionality. Coordin. Chem. Rev., 246(1-2), 169-184.
26. Karimi, B., Abedi, S., Clark, J. H., & Budarin, V. (2006). Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels of SBA‐15 in Stabilizing Palladium Nanoparticles. Angew. Chem. Int. Edit., 45(29), 4776-4779.
27. Wilson, K., & Clark, J. H. (2000). Solid acids and their use as environmentally friendly catalysts in organic synthesis. Pure Appl. Chem., 72(7), 1313-1319.
28. Walcarius, A., Etienne, M., & Lebeau, B. (2003). Rate of access to the binding sites in organically modified silicates. 2. Ordered mesoporous silicas grafted with amine or thiol groups. Chem. Mater., 15(11), 2161-2173.
29. Clearfield, A. (1998). Organically pillared micro-and mesoporous materials. Chem. of Mater., 10(10), 2801-2810.
30. Chen, C., Geng, J., Pu, F., Yang, X., Ren, J., & Qu, X. (2011). Polyvalent Nucleic Acid/Mesoporous Silica Nanoparticle Conjugates: Dual Stimuli‐Responsive Vehicles for Intracellular Drug Delivery. Angew. Chem. Int. Ent., 50(4), 882-886.
31. Boissiere, C., Grosso, D., Chaumonnot, A., Nicole, L., & Sanchez, C. (2011). Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv. Mater., 23(5), 599-623.
32. Moreau, J. J., Vellutini, L., Chi Man, M. W., Bied, C., Bantignies, J. L., Dieudonné, P., & Sauvajol, J. L. (2001). Self-organized hybrid silica with long-range ordered lamellar structure. J. Am. Chem. Soc., 123(32), 7957-7958.
33. Weitkamp, J., Hunger, M., & Rymsa, U. (2001). Base catalysis on Micropor. Mesopor. Mat.: recent progress and perspectives. Micropor. Mesopor. Mat., 48(1-3), 255-270.
34. Nguyen, T. D., Leung, K. C. F., Liong, M., Pentecost, C. D., Stoddart, J. F., & Zink, J. I. (2006). Construction of a pH-driven supramolecular nanovalve. Org. Lett., 8(15), 3363-3366.
35. Thomas, J. M., & Raja, R. (2008). Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Accounts Chem. Res., 41(6), 708-720.
36. Zhao, D., Peidong, Y., & Qisheng, H. (1998). Topological construction of mesoporous materials. Curr. Opin. Solid St. M. 3(1), 111-121.
37. Hartmann, M., Kullmann, S., & Keller, H. (2010). Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J. Mater. Chem., 20(41), 9002-9017.
38. Khushalani, D., Kuperman, A., Ozin, G. A., Tanaka, K., Coombs, N., Olken, M. M., & Garcés, J. (1995). Metamorphic materials: restructuring siliceous mesoporous materials. Adv. Mater., 7(10), 842-846.
39. Hoffmann, F., & Fröba, M. (2011). Vitalising porous inorganic silica networks with organic functions—PMOs and related hybrid materials. Chem. Soc. Rev., 40(2), 608-620.
40. Wang, D., Xie, T., Peng, Q., & Li, Y. (2008). Ag, Ag2S, and Ag2Se nanocrystals: synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc., 130(12), 4016-4022.
41. Yu, J., Cui, Y., Wu, C., Yang, Y., Wang, Z., O'Keeffe, M., ... & Qian, G. (2012). Second‐order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal–organic framework. Angew. Chem-Ger Edit, 124(42), 10694-10697.
42. Casasús, R., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., ... & Ruiz, E. (2008). Dual aperture control on pH-and anion-driven supramolecular nanoscopic hybrid gate-like ensembles. J. Am. Chem. Soc., 130(6), 1903-1917.
43. Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., ... & Amoros, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sci., 2(4), 405-420.
44. Jérôme, F., Pouilloux, Y., & Barrault, J. (2008). Rational design of solid catalysts for the selective use of glycerol as a natural organic building block. Chem. Sus. Chem., 1(7), 586-613.
45. Cundy, C. S. (1998). Microwave techniques in the synthesis and modification of zeolite catalysts. A review. Collect. Czech. Chem. C., 63(11), 1699-1723.
46. Qiu, L. G., Xu, T., Li, Z. Q., Wang, W., Wu, Y., Jiang, X., ... & Zhang, L. D. (2008). Hierarchically Micro‐and Mesoporous Metal–Organic Frameworks with Tunable Porosity. Angew. Chem-Ger Edit, 120(49), 9629-9633.
47. Ariga, K., Vinu, A., Hill, J. P., & Mori, T. (2007). Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 251(21-24), 2562-2591.
48. Sanchez, C., Galo, J., Ribot, F., & Grosso, D. (2003). Design of functional nano-structured materials through the use of controlled hybrid organic–inorganic interfaces. Comptes Rendus Chimie, 6(8-10), 1131-1151.
49. Soler‐Illia, G. D. A., & Innocenzi, P. (2006). Mesoporous hybrid thin films: The physics and chemistry beneath. Chem.–A Europ. J., 12(17), 4478-4494.
50. Braunstein, P. (2004). Functional ligands and complexes for new structures, homogeneous catalysts and nanomaterials. J. Organom. Chgem., 689(24), 3953-3967.
51. Bernardos, A., Aznar, E., Marcos, M. D., Martínez‐Máñez, R., Sancenón, F., Soto, J., ... & Amorós, P. (2009). Enzyme‐responsive controlled release using mesoporous silica supports capped with lactose. Angew. Chem-Ger Edit, 121(32), 5998-6001.
52. Budarin, V., Clark, J. H., Hardy, J. J., Luque, R., Milkowski, K., Tavener, S. J., & Wilson, A. J. (2006). Starbons: New starch‐derived mesoporous carbonaceous materials with tunable properties. Angew. Chem-Ger Edit, 118(23), 3866-3870.
53. Soler-Illia, G. J., & Azzaroni, O. (2011). Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem. Soc. Rev., 40(2), 1107-1150.
54. Fang, Q. R., Yuan, D. Q., Sculley, J., Li, J. R., Han, Z. B., & Zhou, H. C. (2010). Functional mesoporous metal− organic frameworks for the capture of heavy metal ions and size-selective catalysis. Inorg. Chem., 49(24), 11637-11642.
55. Ozin, G. A., Hou, K., Lotsch, B. V., Cademartiri, L., Puzzo, D. P., Scotognella, F., ... & Thomson, J. (2009). Nanofabrication by self-assembly. Mater. Today, 12(5), 12-23.
56. Han, Y., Li, D., Zhao, L., Song, J., Yang, X., Li, N., ... & Meng, X. (2003). High‐Temperature Generalized Synthesis of Stable Ordered Mesoporous Silica‐Based Materials by Using Fluorocarbon–Hydrocarbon Surfactant Mixtures. Angew. Chem-Ger Edit, 115(31), 3761-3765.
57. Karimi, B., Biglari, A., Clark, J. H., & Budarin, V. (2007). Green, Transition‐Metal‐Free Aerobic Oxidation of Alcohols Using a Highly Durable Supported Organocatalyst. Angew. Chem. Int. Ent., 46(38), 7210-7213.
58. Botterhuis, N. E., Sun, Q., Magusin, P. C., Van Santen, R. A., & Sommerdijk, N. A. (2006). Hollow silica spheres with an ordered pore structure and their application in controlled release studies. Chem.–A Europ. J., 12(5), 1448-1456.
59. Zhu, Y., & Fujiwara, M. (2007). Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled‐release nanosystem. Angew. Chem. Int. Ent., 46(13), 2241-2244.
60. Burleigh, M. C., Markowitz, M. A., Spector, M. S., & Gaber, B. P. (2001). Amine-functionalized periodic mesoporous organosilicas. Chem. Mater., 13(12), 4760-4766.
61. Holland, B. T., Isbester, P. K., Blanford, C. F., Munson, E. J., & Stein, A. (1997). Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors. J. Am. Chem. Soc., 119(29), 6796-6803.
62. Spitler, E. L., Colson, J. W., Uribe‐Romo, F. J., Woll, A. R., Giovino, M. R., Saldivar, A., & Dichtel, W. R. (2012). Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew. Chem-Ger Edit, 124(11), 2677-2681.
63. Liu, J., Shin, Y., Nie, Z., Chang, J. H., Wang, L. Q., Fryxell, G. E., ... & Exarhos, G. J. (2000). Molecular assembly in ordered mesoporosity: A new class of highly functional nanoscale materials. The J. of Physical Chem. A, 104(36), 8328-8339.
64. Fischbach, A., Klimpel, M. G., Widenmeyer, M., Herdtweck, E., Scherer, W., & Anwander, R. (2004). Stereospecific Polymerization of Isoprene with Molecular and MCM‐48‐Grafted Lanthanide (III) Tetraalkylaluminates. Angew. Chem-Ger Edit, 116(17), 2284-2289.
65. Behrens, P. (1993). Mesoporous inorganic solids. Adv. Mater., 5(2), 127-132.
66. MacLachlan, M. J., Asefa, T., & Ozin, G. A. (2000). Writing on the wall with a new synthetic quill. Chem.–A Europ.J., 6(14), 2507-2511.
67. Erlebacher, J., & Seshadri, R. (2009). Hard materials with tunable porosity. Mrs Bulletin, 34(8), 561-568.
68. Ghanbari-Siahkali, A., Philippou, A., Dwyer, J., & Anderson, M. W. (2000). The acidity and catalytic activity of heteropoly acid on MCM-41 investigated by MAS NMR, FTIR and catalytic tests. Appl. Catal. B-Gen., 192(1), 57-69.
69. Kelly, J. A., Giese, M., Shopsowitz, K. E., Hamad, W. Y., & MacLachlan, M. J. (2014). The development of chiral nematic mesoporous materials. Accounts Chem. Res., 47(4), 1088-1096.
70. Zou, R., Abdel-Fattah, A. I., Xu, H., Zhao, Y., & Hickmott, D. D. (2010). Storage and separation applications of nanoporous metal–organic frameworks. CrystEngComm, 12(5), 1337-1353.
71. Li, X. H., Wang, X., & Antonietti, M. (2012). Solvent-free and metal-free oxidation of toluene using O2 and g-C3N4 with nanopores: nanostructure boosts the catalytic selectivity. Acs Catalysis, 2(10), 2082-2086.
72. Huang, Y., Cai, H., Yu, T., Zhang, F., Zhang, F., Meng, Y., ... & Zhao, D. (2007). Formation of Mesoporous Carbon With a Face‐Centered‐Cubic Fd ̄3 m Structure and Bimodal Architectural Pores From the Reverse Amphiphilic Triblock Copolymer PPO‐PEO‐PPO. Angew. Chem-Ger Edit, 119(7), 1107-1111.
73. Kilian, K. A., Böcking, T., & Gooding, J. J. (2009). The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem. Commun., (6), 630-640.
74. Kanatzidis, M. G. (2007). Beyond silica: Nonoxidic mesostructured materials. Adv. Mater., 19(9), 1165-1181.
75. Kandambeth, S., Shinde, D. B., Panda, M. K., Lukose, B., Heine, T., & Banerjee, R. (2013). Enhancement of Chemical Stability and Crystallinity in Porphyrin‐Containing Covalent Organic Frameworks by Intramolecular Hydrogen Bonds. Angew. Chem. Int. Ent., 52(49), 13052-13056.
76. Chen, S., Duan, J., Tang, Y., & Zhang Qiao, S. (2013). Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chemistry–A European Journal, 19(22), 7118-7124.
77. Xu, W., Riikonen, J., & Lehto, V. P. (2013). Mesoporous systems for poorly soluble drugs. Int. J. Pharm., 453(1), 181-197.
78. Qian, K. K., & Bogner, R. H. (2012). Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. J Pharm. Sci., 101(2), 444-463.
79. Goettmann, F., & Sanchez, C. (2007). How does confinement affect the catalytic activity of mesoporous materials?. J. Mater. Chem., 17(1), 24-30.
80. Kresge, C. T., & Roth, W. J. (2013). The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev., 42(9), 3663-3670.
81. Vallet-Regí, M., Balas, F., Colilla, M., & Manzano, M. (2008). Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog. Solid State. Ch., 36(3), 163-191.
82. Zeng, W., Qian, X. F., Zhang, Y. B., Yin, J., & Zhu, Z. K. (2005). Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system. Mater. Res. Bull., 40(5), 766-772.
83. Feng, D., Wang, K., Su, J., Liu, T. F., Park, J., Wei, Z., ... & Zhou, H. C. (2015). A highly stable zeotype mesoporous zirconium metal–organic framework with ultralarge pores. Angew. Chem. Int. Ent., 54(1), 149-154.
84. Ros‐Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez‐Máñez, R., ... & Garró, N. (2008). A mesoporous 3D hybrid material with dual functionality for Hg2+ detection and adsorption. Chem.–A Europ. J., 14(27), 8267-8278.
85. Climent, E., Marcos, M. D., Martínez‐Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The determination of methylmercury in real samples using organically capped mesoporous inorganic materials capable of signal amplification. Angew. Chem-Ger Edit, 121(45), 8671-8674.
86. Cabrera, S., El Haskouri, J., Beltrán-Porter, A., Beltrán-Porter, D., Marcos, M. D., & Amorós, P. (2000). Enhanced surface area in thermally stable pure mesoporous TiO2. Solid State Sci., 2(5), 513-518.
87. Wang, J., Johnston-Peck, A. C., & Tracy, J. B. (2009). Nickel phosphide nanoparticles with hollow, solid, and amorphous structures. Chem. Mater., 21(19), 4462-4467.
88. Salonen, J., & Lehto, V. P. (2008). Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem. Eng. J., 137(1), 162-172.
89. Polarz, S., Orlov, A. V., Schüth, F., & Lu, A. H. (2007). Preparation of High‐Surface‐Area Zinc Oxide with Ordered Porosity, Different Pore Sizes, and Nanocrystalline Walls. Chem.–A Europ. J., 13(2), 592-597.
90. Zareyee, D., & Karimi, B. (2007). A novel and highly efficient method for the silylation of alcohols with hexamethyldisilazane (HMDS) catalyzed by recyclable sulfonic acid-functionalized ordered nanoporous silica. Tetrahedron Lett., 48(7), 1277-1280.
91. Jia, M., Seifert, A., Berger, M., Giegengack, H., Schulze, S., & Thiel, W. R. (2004). Hybrid mesoporous materials with a uniform ligand distribution: synthesis, characterization, and application in epoxidation catalysis. Chem. Mater., 16(5), 877-882.
92. Zhou, W., & Fu, H. (2013). Mesoporous TiO2: preparation, doping, and as a composite for photocatalysis. ChemCatChem, 5(4), 885-894.
93. Zhang, H., Sun, J., Ma, D., Weinberg, G., Su, D. S., & Bao, X. (2006). Engineered complex emulsion system: toward modulating the pore length and morphological architecture of mesoporous silicas. The J. of Phys. Chem. B, 110(51), 25908-25915.
94. Erathodiyil, N., Ooi, S., Seayad, A. M., Han, Y., Lee, S. S., & Ying, J. Y. (2008). Palladium nanoclusters supported on propylurea‐modified siliceous mesocellular foam for coupling and hydrogenation reactions. Chem.–A Europ. J., 14(10), 3118-3125.
95. Budarin, V., Luque, R., Macquarrie, D. J., & Clark, J. H. (2007). Towards a bio‐based industry: benign catalytic esterifications of succinic acid in the presence of water. Chem.–A Europ. J., 13(24), 6914-6919.
96. Dapurkar, S. E., Badamali, S. K., & Selvam, P. (2001). Nanosized metal oxides in the mesopores of MCM-41 and MCM-48 silicates. Catal. Today, 68(1-3), 63-68.
97. Qu, F., Zhu, G., Huang, S., Li, S., & Qiu, S. (2006). Effective controlled release of captopril by silylation of mesoporous MCM‐41. Chemphyschem: a European journal of chemical physics and physical chemistry, 7(2), 400-406.
98. Brégeault, J. M., Vennat, M., Salles, L., Piquemal, J. Y., Mahha, Y., Briot, E., ... & Thouvenot, R. (2006). From polyoxometalates to polyoxoperoxometalates and back again; potential applications. J. Molec. Catal. A: Chem., 250(1-2), 177-189.
99. Brunel, D., Cauvel, A., Di Renzo, F., Fajula, F., Fubini, B., Onida, B., & Garrone, E. (2000). Preferential grafting of alkoxysilane coupling agents on the hydrophobic portion of the surface of micelle-templated silica. New J. Chem., 24(10), 807-813.
100. Innocenzi, P., Malfatti, L., Kidchob, T., & Falcaro, P. (2009). Order− Disorder in self-assembled mesostructured silica films: a concepts review. Chem. Mater., 21(13), 2555-2564.
101. Fryxell, G. E., Mattigod, S. V., Lin, Y., Wu, H., Fiskum, S., Parker, K., ... & Liu, J. (2007). Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): The importance of ligand posture in functional nanomaterials. J. Mater. Chem., 17(28), 2863-2874.
102. Huq, R., Mercier, L., & Kooyman, P. J. (2001). Incorporation of cyclodextrin into mesostructured silica. Chem. Mater., 13(12), 4512-4519.
103. Sun, J., & Bao, X. (2008). Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts. Chem.–A Europ. J., 14(25), 7478-7488.
104. Yuan, S., Sheng, Q., Zhang, J., Chen, F., Anpo, M., & Zhang, Q. (2005). Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Micropor. Mesopor. Mat., 79(1-3), 93-99.
105. Wirnsberger, G., Yang, P., Scott, B. J., Chmelka, B. F., & Stucky, G. D. (2001). Mesostructured materials for optical applications: from low-k dielectrics to sensors and lasers. Spectrochimica Acta A, 57(10), 2049-2060.
106. Sheldon, R. A., Arends, I., & Hanefeld, U. (2007). Green Chem. and catalysis. John Wiley & Sons.
107. Sanchez, C., Lebeau, B., Ribot, F., & In, M. (2000). Molecular design of sol-gel derived hybrid organic-inorganic nanocomposites. J Sol.-Gel. Sci. Techn., 19(1-3), 31-38.
108. Boissière, C., Nicole, L., Gervais, C., Babonneau, F., Antonietti, M., Amenitsch, H., ... & Grosso, D. (2006). Nanocrystalline mesoporous γ-alumina powders “UPMC1 Material” gathers thermal and chemical stability with high surface area. Chem. Mater., 18(22), 5238-5243.
109. Luo, Z., Poyraz, A. S., Kuo, C. H., Miao, R., Meng, Y., Chen, S. Y., ... & Suib, S. L. (2014). Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater., 27(1), 6-17.
110. Qi, C., Zhu, Y. J., Zhao, X. Y., Lu, B. Q., Tang, Q. L., Zhao, J., & Chen, F. (2013). Highly Stable Amorphous Calcium Phosphate Porous Nanospheres: Microwave‐Assisted Rapid Synthesis Using ATP as Phosphorus Source and Stabilizer, and Their Application in Anticancer Drug Delivery. Chem.–A Europ. J., 19(3), 981-987.
111. Qiu, H., & Che, S. (2011). Chiral mesoporous silica: Chiral construction and imprinting via cooperative self-assembly of amphiphiles and silica precursors. Chem. Soc. Rev., 40(3), 1259-1268.
112. Sun, Y. L., Yang, B. J., Zhang, S. X. A., & Yang, Y. W. (2012). Cucurbit [7] uril Pseudorotaxane‐Based Photoresponsive Supramolecular Nanovalve. Chem.–A Europ. J., 18(30), 9212-9216.
113. Nicole, L., Rozes, L., & Sanchez, C. (2010). Integrative approaches to hybrid multifunctional materials: from multidisciplinary research to applied technologies. Adv. Mater., 22(29), 3208-3214.
114. Brinker, C. J., & Dunphy, D. R. (2006). Morphological control of surfactant-templated metal oxide films. Curr. Opin. Colloid In, 11(2-3), 126-132.
115. Schoedel, A., Wojtas, L., Kelley, S. P., Rogers, R. D., Eddaoudi, M., & Zaworotko, M. J. (2011). Network Diversity through Decoration of Trigonal‐Prismatic Nodes: Two‐Step Crystal Engineering of Cationic Metal–Organic Materials. Angew. Chem-Ger Edit, 123(48), 11623-11626.
116. Yang, Z., Lu, Y., & Yang, Z. (2009). Mesoporous materials: tunable structure, morphology and composition. Chem. Commun., (17), 2270-2277.
117. Yang, Q., Ma, S., Li, J., Xiao, F., & Xiong, H. (2006). A water-compatible, highly active and reusable PEG-coated mesoporous silica-supported palladium complex and its application in Suzuki coupling reactions. Chem. Commun., (23), 2495-2497.
118. Kinnari, P., Mäkilä, E., Heikkilä, T., Salonen, J., Hirvonen, J., & Santos, H. A. (2011). Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. Int. J. Pharm., 414(1-2), 148-156.
119. Bernardos, A., Aznar, E., Coll, C., Martínez-Mañez, R., Barat, J. M., Marcos, M. D., ... & Soto, J. (2008). Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. J. Control Release, 131(3), 181-189.
120. Luque, R., Budarin, V., Clark, J. H., & Macquarrie, D. J. (2008). Glycerol transformations on polysaccharide derived mesoporous materials. Applied Catalysis B: Environmental, 82(3-4), 157-162.
121. Ciampi, S., Böcking, T., Kilian, K. A., Harper, J. B., & Gooding, J. J. (2008). Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters. Langmuir, 24(11), 5888-5892.
122. Hartmann, S., Brandhuber, D., & Hüsing, N. (2007). Glycol-modified silanes: novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials. Accounts Chem. Res., 40(9), 885-894.
123. Fryxell, G. E. (2006). The synthesis of functional mesoporous materials. Inorg. Chem. Communications, 9(11), 1141-1150.
124. White, R. J., Brun, N., Budarin, V. L., Clark, J. H., & Titirici, M. M. (2014). Always look on the “light” side of life: sustainable carbon aerogels. ChemSusChem, 7(3), 670-689.
125. Sinha, A. K., & Suzuki, K. (2005). Three‐Dimensional Mesoporous Chromium Oxide: A Highly Efficient Material for the Elimination of Volatile Organic Compounds. Angew. Chem. Int. Ent., 44(2), 271-273.
126. Shi, J. Y., Wang, C. A., Li, Z. J., Wang, Q., Zhang, Y., & Wang, W. (2011). Heterogeneous organocatalysis at work: functionalization of hollow periodic mesoporous organosilica spheres with MacMillan catalyst. Chem.–A Europ. J., 17(22), 6206-6213.
127. Cheng, K., & Landry, C. C. (2007). Diffusion-based deprotection in mesoporous materials: a strategy for differential functionalization of porous silica particles. J. Am. Chem. Soc., 129(31), 9674-9685.
128. Lindén, M., Schacht, S., Schüth, F., Steel, A., & Unger, K. K. (1998). Recent advances in nano-and macroscale control of hexagonal, mesoporous materials. J. Porous Mat, 5(3-4), 177-193.
129. Li, G., Bhosale, S., Wang, T., Zhang, Y., Zhu, H., & Fuhrhop, J. H. (2003). Gram‐Scale Synthesis of Submicrometer‐Long Polythiophene Wires in Mesoporous Silica Matrices. Angew. Chem. Int. Ent., 42(32), 3818-3821.
130. Ciriminna, R., Hesemann, P., Moreau, J. J., Carraro, M., Campestrini, S., & Pagliaro, M. (2006). Aerobic oxidation of alcohols in carbon dioxide with silica‐supported ionic liquids doped with perruthenate. Chem.–A Europ. J., 12(20), 5220-5224.
131. Gong, B., Peng, Q., Jur, J. S., Devine, C. K., Lee, K., & Parsons, G. N. (2011). Sequential vapor infiltration of metal oxides into sacrificial polyester fibers: shape replication and controlled porosity of microporous/mesoporous oxide monoliths. Chem. Mater., 23(15), 3476-3485.
132. Miao, S., & Shanks, B. H. (2009). Esterification of biomass pyrolysis model acids over sulfonic acid-functionalized mesoporous silicas. Appl. Catal. B-Gen., 359(1-2), 113-120.
133. Zhou, Y., Tan, L. L., Li, Q. L., Qiu, X. L., Qi, A. D., Tao, Y., & Yang, Y. W. (2014). Acetylcholine‐triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors. Chem.–A Europ. J., 20(11), 2998-3004.
134. Jaramillo, T. F., Baeck, S. H., Kleiman‐Shwarsctein, A., & McFarland, E. W. (2004). Combinatorial electrochemical synthesis and screening of mesoporous ZnO for photocatalysis. Macromol. Rapid comm., 25(1), 297-301.
135. Wellmann, H., Rathousky, J., Wark, M., Zukal, A., & Schulz-Ekloff, G. (2001). Formation of CdS nanoparticles within functionalized siliceous MCM-41. Micropor. Mesopor. Mat., 44, 419-425.
136. David, A. E., Wang, N. S., Yang, V. C., & Yang, A. J. (2006). Chemically surface modified gel (CSMG): an excellent enzyme-immobilization matrix for industrial processes. J. Biotech., 125(3), 395-407.
137. Zhou, Z., & Hartmann, M. (2012). Recent progress in biocatalysis with enzymes immobilized on mesoporous hosts. Topics Catal., 55(16-18), 1081-1100.
138. Malvi, B., Sarkar, B. R., Pati, D., Mathew, R., Ajithkumar, T. G., & Gupta, S. S. (2009). “Clickable” SBA-15 mesoporous materials: synthesis, characterization and their reaction with alkynes. J. Mater. Chem., 19(10), 1409-1416.
139. Kessel, S., Thomas, A., & Börner, H. G. (2007). Mimicking biosilicification: programmed coassembly of peptide–polymer nanotapes and silica. Angew. Chem. Int. Ent., 46(47), 9023-9026.
140. Wang, Y., Bryan, C., Xu, H., Pohl, P., Yang, Y., & Brinker, C. J. (2002). Interface chemistry of nanostructured materials: Ion adsorption on mesoporous alumina. J. Coll. Interf. Sci, 254(1), 23-30.
141. Gimenez, R., Lydon, D. P., & Serrano, J. L. (2002). Metallomesogens: a promise or a fact?. Curr. Opin. Solid St. M. 6(6), 527-535.
142. Miao, R., Luo, Z., Zhong, W., Chen, S. Y., Jiang, T., Dutta, B., ... & Suib, S. L. (2016). Mesoporous TiO 2 modified with carbon quantum dots as a high-performance visible light photocatalyst. App. Catal. B-Environ. 189, 26-38.
143. Zhang, L., Cha, D., & Wang, P. (2012). Remotely controllable liquid marbles. Adv. Mater., 24(35), 4756-4760.
144. Masters, A. F., & Maschmeyer, T. (2011). Zeolites–From curiosity to cornerstone. Micropor. Mesopor. Mat., 142(2-3), 423-438.
145. Mondal, J., Modak, A., & Bhaumik, A. (2011). Highly efficient mesoporous base catalyzed Knoevenagel condensation of different aromatic aldehydes with malononitrile and subsequent noncatalytic Diels–Alder reactions. J. Molec. Catal. A: Chem., 335(1-2), 236-241.
146. Freund, C., Abrantes, M., & Kühn, F. E. (2006). Monomeric cyclopentadiene molybdenum oxides and their carbonyl precursors as epoxidation catalysts. J. Organom. Chgem., 691(18), 3718-3729.
147. Choudary, B. M., Ramani, T., Maheswaran, H., Prashant, L., Ranganath, K. V. S., & Kumar, K. V. (2006). Catalytic Asymmetric Epoxidation of Unfunctionalised Olefins using Silica, LDH and Resin‐Supported Sulfonato‐Mn (salen) Complex. Adv. synth. Catalysis, 348(4‐5), 493-498.
148. Galarneau, A., Villemot, F., Rodriguez, J., Fajula, F., & Coasne, B. (2014). Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir, 30(44), 13266-13274.
149. Balu, A. M., Budarin, V., Shuttleworth, P. S., Pfaltzgraff, L. A., Waldron, K., Luque, R., & Clark, J. H. (2012). Valorisation of orange peel residues: waste to biochemicals and nanoporous materials. ChemSusChem, 5(9), 1694-1697.
150. Silva, S. S., Duarte, A. R. C., Carvalho, A. P., Mano, J. F., & Reis, R. L. (2011). Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta biomater., 7(3), 1166-1172.
151. Nischang, I., Brüggemann, O., & Teasdale, I. (2011). Facile, Single‐Step Preparation of Versatile, High‐Surface‐Area, Hierarchically Structured Hybrid Materials. Angew. Chem. Int. Ent., 50(20), 4592-4596.
152. Vallet-Regí, M. (2010). Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chimie, 13(1-2), 174-185.
153. Aznar, E., Coll, C., Marcos, M. D., Martínez‐Máñez, R., Sancenon, F., Soto, J., ... & Ruiz, E. (2009). Borate‐driven gatelike scaffolding using mesoporous materials functionalised with saccharides. Chem.–A Europ. J., 15(28), 6877-6888.
154. Gracia, M. J., Losada, E., Luque, R., Campelo, J. M., Luna, D., Marinas, J. M., & Romero, A. A. (2008). Activity of Gallium and Aluminum SBA-15 materials in the Friedel–Crafts alkylation of toluene with benzyl chloride and benzyl alcohol. Appl. Catal. B-Gen., 349(1-2), 148-155.
155. Budarin, V. L., Clark, J. H., Luque, R., Macquarrie, D. J., Koutinas, A., & Webb, C. (2007). Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chem., 9(9), 992-995.
156. Corriu, R. J., Mehdi, A., Reyé, C., & Thieuleux, C. (2003). Control of coordination chemistry in both the framework and the pore channels of mesoporous hybrid materials. New J. Chem., 27(6), 905-908.
157. White, R. J., Budarin, V. L., & Clark, J. H. (2008). Tuneable Mesoporous Materials from α‐d‐Polysaccharides. ChemSusChem: Chemistry & Sustainability Energy & Materials, 1(5), 408-411.
158. Yoshitake, H. (2010). Design of functionalization and structural analysis of organically-modified siliceous oxides with periodic structures for the development of sorbents for hazardous substances. J. Mater. Chem., 20(22), 4537-4550.
159. Wang, D., Osmundsen, C. M., Taarning, E., & Dumesic, J. A. (2013). Selective production of aromatics from alkylfurans over solid acid catalysts. ChemCatChem, 5(7), 2044-2050.
160. Mizoshita, N., Goto, Y., Kapoor, M. P., Shimada, T., Tani, T., & Inagaki, S. (2009). Fluorescence emission from 2, 6‐naphthylene‐bridged mesoporous organosilicas with an amorphous or crystal‐like framework. Chem.–A Europ. J., 15(1), 219-226.
161. Fischer, A., Makowski, P., Müller, J. O., Antonietti, M., Thomas, A., & Goettmann, F. (2008). High‐Surface‐Area TiO2 and TiN as Catalysts for the C-C Coupling of Alcohols and Ketones. ChemSusChem: Chemistry & Sustainability Energy & Materials, 1(5), 444-449.
162. Goettmann, F., Moores, A., Boissière, C., Le Floch, P., & Sanchez, C. (2005). A selective chemical sensor based on the plasmonic response of phosphinine‐stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small, 1(6), 636-639.
163. Garcia-Bennett, A. E. (2011). Synthesis, toxicology and potential of ordered mesoporous materials in nanomedicine. Nanomedicine, 6(5), 867-877.
164. Su, D. S., Delgado, J. J., Liu, X., Wang, D., Schlögl, R., Wang, L., ... & Xiao, F. S. (2009). Highly ordered mesoporous carbon as catalyst for oxidative dehydrogenation of ethylbenzene to styrene. Chem.–An Asian J., 4(7), 1108-1113.
165. Guo, W., Wang, J., Lee, S. J., Dong, F., Park, S. S., & Ha, C. S. (2010). A general pH‐responsive supramolecular nanovalve based on mesoporous organosilica hollow nanospheres. Chem.–A Europ. J., 16(29), 8641-8646.
166. White, R. J., Budarin, V. L., & Clark, J. H. (2010). Pectin‐Derived Porous Materials. Chem.–A Europ. J., 16(4), 1326-1335.
167. Nowotny, M., Pedersen, L. N., Hanefeld, U., & Maschmeyer, T. (2002). Increasing the ketone selectivity of the cobalt‐catalyzed radical chain oxidation of cyclohexane. Chem.–A Europ. J., 8(16), 3724-3731.
168. Campbell, A. S., Dong, C., Meng, F., Hardinger, J., Perhinschi, G., Wu, N., & Dinu, C. Z. (2014). Enzyme catalytic efficiency: a function of bio–nano interface reactions. ACS applied materials & interfaces, 6(8), 5393-5403.
169. Ng, A., Ciampi, S., James, M., Harper, J. B., & Gooding, J. J. (2009). Comparing the reactivity of alkynes and alkenes on silicon (100) surfaces. Langmuir, 25(24), 13934-13941.
170. Valentin, R., Molvinger, K., Viton, C., Domard, A., & Quignard, F. (2005). From hydrocolloids to high specific surface area porous supports for catalysis. Biomacromolecules, 6(5), 2785-2792.
171. Kurth, D. G., Fromm, K. M., & Lehn, J. M. (2001). Hydrogen‐Bonding and Metal‐Ion‐Mediated Self‐Assembly of a Nanoporous Crystal Lattice. Europ. J. of Inorg. Chem., 2001(6), 1523-1526.
172. Bariana, M., Aw, M. S., Kurkuri, M., & Losic, D. (2013). Tuning drug loading and release properties of diatom silica microparticles by surface modifications. Int. J. Pharm., 443(1-2), 230-241.
173. Yang, D., Paul, B., Xu, W., Yuan, Y., Liu, E., Ke, X., ... & Zhu, H. (2010). Alumina nanofibers grafted with functional groups: a new design in efficient sorbents for removal of toxic contaminants from water. Water research, 44(3), 741-750.
174. Pérez‐Quintanilla, D., Gómez‐Ruiz, S., Žižak, Ž., Sierra, I., Prashar, S., del Hierro, I., ... & Kaluđerović, G. N. (2009). A new generation of anticancer drugs: mesoporous materials modified with titanocene complexes. Chem.–A Europ. J., 15(22), 5588-5597.
175. Dufaud, V., Beauchesne, F., & Bonneviot, L. (2005). Organometallic chemistry inside the pore walls of mesostructured silica materials. Angew. Chem. Int. Ent., 44(22), 3475-3477.
176. An, K., Alayoglu, S., Ewers, T., & Somorjai, G. A. (2012). Colloid chemistry of nanocatalysts: A molecular view. J. Coll. Interf. Sci, 373(1), 1-13.
177. Gao, Z., Feng, Y., Cui, F., Hua, Z., Zhou, J., Zhu, Y., & Shi, J. (2011). Pd-loaded superparamagnetic mesoporous NiFe2O4 as a highly active and magnetically separable catalyst for Suzuki and Heck reactions. J. Mol. Catal. A-Chem., 336(1-2), 51-57.
178. González, B., Colilla, M., de Laorden, C. L., & Vallet-Regí, M. (2009). A novel synthetic strategy for covalently bonding dendrimers to ordered mesoporous silica: potential drug delivery applications. J. Mater. Chem., 19(47), 9012-9024.
179. Grosso, D., Babonneau, F., Sanchez, C., de AA Soler-Illia, G. J., Crepaldi, E. L., Albouy, P. A., ... & Brunet-Bruneau, A. (2003). A first insight in the mechanisms involved in the self-assembly of 2D-hexagonal templated SiO2 and TiO2 mesostructured films during dip-coating. J Sol.-Gel. Sci. Techn., 26(1-3), 561-565.
180. Soler‐Illia, G. J. D. A., Rozes, L., Boggiano, M. K., Sanchez, C., Turrin, C. O., Caminade, A. M., & Majoral, J. P. (2000). New mesotextured hybrid materials made from assemblies of dendrimers and titanium (IV)‐oxo‐organo clusters. Angew. Chem-Ger Edit, 112(23), 4419-4424.
181. Du, M., Zhu, P., Yan, X., Su, Y., Song, W., & Li, J. (2011). Honeycomb self‐assembled peptide scaffolds by the breath figure method. Chem.–A Europ. J., 17(15), 4238-4245.
182. Liu, J., Du, X., & Zhang, X. (2011). Enzyme‐Inspired Controlled Release of Cucurbit [7] uril Nanovalves by Using Magnetic Mesoporous Silica. Chem.–A Europ. J., 17(3), 810-815.
183. Anurova, N. A., Blatov, V. A., Ilyushin, G. D., & Proserpio, D. M. (2010). Natural tilings for zeolite-type frameworks. The J. Physic. Chem. C, 114(22), 10160-10170.
184. Kilian, K. A., Böcking, T., Gaus, K., & Gooding, J. J. (2008). Introducing distinctly different chemical functionalities onto the internal and external surfaces of mesoporous materials. Angew. Chem-Ger Edit, 120(14), 2737-2739.
185. Verma, S., Nandi, M., Modak, A., Jain, S. L., & Bhaumik, A. (2011). Novel Organic‐Inorganic Hybrid Mesoporous Silica Supported Oxo‐Vanadium Schiff Base for Selective Oxidation of Alcohols. Adv. synth. Catalysis, 353(11‐12), 1897-1902.
186. Muñoz-Espí, R., Weiss, C. K., & Landfester, K. (2012). Inorganic nanoparticles prepared in miniemulsion. Curr. Opin. Colloid In, 17(4), 212-224.
187. Saini, V. K., Andrade, M., Pinto, M. L., Carvalho, A. P., & Pires, J. (2010). How the adsorption properties get changed when going from SBA-15 to its CMK-3 carbon replica. Sep. Purfic. Technol., 75(3), 366-376.
188. Kuschel, A., Sievers, H., & Polarz, S. (2008). Amino acid silica hybrid materials with mesoporous structure and enantiopure surfaces. Angew. Chem. Int. Ent., 47(49), 9513-9517.
189. Deshpande, A. S., Burgert, I., & Paris, O. (2006). Hierarchically Structured Ceramics by High‐Precision Nanoparticle Casting of Wood. Small, 2(8‐9), 994-998.
190. Agirrezabal-Telleria, I., Requies, J., Güemez, M. B., & Arias, P. L. (2014). Dehydration of d-xylose to furfural using selective and hydrothermally stable arenesulfonic SBA-15 catalysts. App. Catal. B-Environ. 145, 34-42.
191. Thommes, M., Mitchell, S., & Pérez-Ramírez, J. (2012). Surface and pore structure assessment of hierarchical MFI zeolites by advanced water and argon sorption studies. The J. of Physic. Chem. C, 116(35), 18816-18823.
192. Park, S. S., & Ha, C. S. (2006). Organic–inorganic hybrid mesoporous silicas: functionalization, pore size, and morphology control. The Chem. Rec., 6(1), 32-42.
193. Wei, Y., Xu, J., Feng, Q., Lin, M., Dong, H., Zhang, W. J., & Wang, C. (2001). A novel method for enzyme immobilization: direct encapsulation of acid phosphatase in nanoporous silica host materials. J. Nanosci. Nanotechno., 1(1), 83-93.
194. Hartmann, P., Brezesinski, T., Sann, J., Lotnyk, A., Eufinger, J. P., Kienle, L., & Janek, J. (2013). Defect chemistry of oxide nanomaterials with high surface area: ordered mesoporous thin films of the oxygen storage catalyst CeO2–ZrO2. ACS nano, 7(4), 2999-3013.
195. Bohström, Z., Rico-Lattes, I., & Holmberg, K. (2010). Oxidation of cyclohexene into adipic acid in aqueous dispersions of mesoporous oxides with built-in catalytical sites. Green Chem., 12(10), 1861-1869.
196. Kim, Y., Kim, C., & Yi, J. (2004). Synthesis of tailored porous alumina with a bimodal pore size distribution. Mater. Res. Bull., 39(13), 2103-2112.
197. Sinha, A. K., & Suzuki, K. (2007). Novel mesoporous chromium oxide for VOCs elimination. App. Catal. B-Environ. 70(1-4), 417-422.
198. Michailovski, A., & Patzke, G. R. (2006). Hydrothermal synthesis of molybdenum oxide based materials: Strategy and structural chemistry. Chem.–A Europ. J., 12(36), 9122-9134.
199. Bhoware, S. S., Shylesh, S., Kamble, K. R., & Singh, A. P. (2006). Cobalt-containing hexagonal mesoporous molecular sieves (Co-HMS): Synthesis, characterization and catalytic activity in the oxidation reaction of ethylbenzene. J. Mol. Catal. A-Chem., 255(1-2), 123-130.
200. Walcarius, A., Delacote, C., & Sayen, S. (2004). Electrochemical probing of mass transfer rates in mesoporous silica-based organic–inorganic hybrids. Electrochimica acta, 49(22-23), 3775-3783.
201. Sayen, S., Etienne, M., Bessière, J., & Walcarius, A. (2002). Tuning the Sensitivity of Electrodes Modified with an Organic‐Inorganic Hybrid by Tailoring the Structure of the Nanocomposite Material. Electroanal, 14(21), 1521-1525.
202. Garcia‐Martinez, J., Xiao, C., Cychosz, K. A., Li, K., Wan, W., Zou, X., & Thommes, M. (2014). Evidence of intracrystalline mesostructured porosity in zeolites by advanced gas sorption, electron tomography and rotation electron diffraction. ChemCatChem, 6(11), 3110-3115.
203. Esfahani, H., Tavasoli, K., & Jabbarzadeh, A. (2019). Big data and social media: A scientometrics analysis. Int. J. Data Net. Sci, 3(3), 145-164.
204. Salimi, D., Tavasoli, K., Gilani, E., Jouyandeh, M., & Sadjadi, S. (2019). The impact of social media on marketing using bibliometrics analysis. Int. J. Data Net. Sci, 3(3), 165-184.
205. Alavi, S., Mehdinezhad, I., & Kahshidinia, B. (2019). A trend study on the impact of social media on advertisement. Int. J. Data Net. Sci, 3(3), 185-200.
206. Gilani, E., Salimia, D., Jouyandeh, M., Tavasoli, K., & Wong, W. (2019). A trend study on the impact of social media in decision making. Int. J. Data Net. Sci, 3(3), 201-222.
207. Pourkhani, A., Abdipour, K., Baher, B., & Moslehpour, M. (2019). The impact of social media in business growth and performance: A scientometrics analysis. Int. J. Data Net. Sci, 3(3), 223-244.
208. Tayebi, S., Manesh, S., Khalili, M., & Sadi-Nezhad, S. (2019). The role of information systems in communication through social media. Int. J. Data Net. Sci, 3(3), 245-268.
209. Javid, E., Nazari, M., & Ghaeli, M. (2019). Social media and e-commerce: A scientometrics analysis. Int. J. Data Net. Sci., 3(3), 269-290.