How to cite this paper
Benzekri, Z., Serrar, H., Boukhris, S., Sallek, B & Souizi, A. (2016). Snail shell as a new natural and reusable catalyst for synthesis of 4H-Pyrans derivatives.Current Chemistry Letters, 5(3), 99-108.
Refrences
1 a) Islam M., Roy A. S., Dey R. C., and Paul S. (2014) Graphene based material as a base catalyst for solvent free Aldolcondensation and Knoevenagel reaction at room temperature. J. Mol. Catalysis A: Chem 394, 66-73. b) Su F., Antoniettia M., and Wang X. (2012) Mpg-C3N4 as a solid base catalyst for Knoevenagel condensations and transesterification reactions. Catal. Sci. Technol. 2 (5) 1005-1009. c) Riadi Y., Abrouki Y., Mamouni R., El Haddad M., Routier S., Guillaumet G., and Lazar S. (2012) New eco-friendly animal bone meal catalysts for preparation of chalcones and aza-Michael adducts. Chem. Cent J. 6, 1-7.
2 Wu J. Y. C., Fong W. F., Zhang J. X., Leung C. H., Kwong H. L., Yang M. S., Li D., and Cheung H. Y. (2003) Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur. J. Pharmacol., 473 (1) 9-17.
3 Raj T., Bhatia R. K., Kapur A., Sharma M., Saxena A. K., and Ishar M. P. S. (2010) Cytotoxic activity of 3-(5-phenyl-3H-[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4H-chromene-3-carbothioic acid N-phenylamides. Eur. J. Med. Chem., 45 (2) 790-794.
4 Rueping M., Sugiono E., and Merino E. (2008) Asymmetric organocatalysis: An efficient enantioselective access to benzopyranes and chromenes. Chem. Eur. J., 14 (21) 6329-6332.
5 Brahmachari G., and Banerjee B. (2014) Facile and one-pot access to diverse and densely functionalized 2 amino-3-cyano 4H pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustainable Chem. Eng., 2 (3) 411-422.
6 Flavin M. T., Rizzo J. D., Khilevich A., Kucherenko A., Sheinkman A. K., Vilaychack V., Lin L., Chen W., Greenwood E. M., Pengsuparp T., Pezzuto J. M., Hughes S. H., Flavin T. M., Cibulski M., Boulanger W. A., Shone R. L., and Xu Z. Q. (1996) Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (±)-calanolide A and its enantiomers. J. Med. Chem., 39 (6) 1303-1313.
7 Moon D. O., Kim K. C., Jin C. Y., Han M. H., Park C., Lee K. J., Park Y. M., Choi Y. H., and Kim G. Y. (2007) Inhibitory effects of eicosapentaenoic acid on lipopoly saccharide-induced activation in BV2 microglia. Int. Immunopharmacol., 7 (2) 222-229.
8 De Andrade-Neto V. F., Goulart M. O., Da Silva Filho J. F., Da Silva M. J., Pinto M. D. C., Pinto A.V., Zalis M. G., Carvalho L. H., and Krettli A.U. (2004) Antimalarial activity of phenazines from lapachol,-lapachone and its derivatives against plasmodium falciparum in vitro and plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 14 (5) 1145-1149.
9 Sacau E. P., Braun A. E., Ravelo A. G., Yapu D. J., and Turba A. G. (2005) Antiplasmodial activity of naphtha quinones related to lapachol and -lapachone. Chem. Biodiversity, 2 (2) 264-274.
10 Morgan L. R., Jursic B. S., Hooper C. L., Neumann D. M., Thangaraj K., and Leblance B. (2002) Anticancer activity for 4,4’-dihydroxybenzophenone-2,4-dinitrophenyl hydrazone (A-007) analogues and their abilities to interact with lymphoendothelial cell surface markers. Bioorg. Med. Chem. Lett., 12 (23) 3407-3411.
11 Kumar A., Maurya R. A., Sharma S. A., Ahmad P., Singh A. B., Bhatia G., and Srivastava A. K. (2009) Pyranocoumarins: A new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg. Med. Chem. Lett., 19 (22) 6447-6451.
12 Feuer G. (1974) Progress in Medicinal Chemistry, Ellis G. P., and West G. P. (Eds) North-Holland Publishing Company: New York, 10, 85-115.
13 Dean F. M. (1963) Naturally Occurring Oxygen Ring Compounds, Butterworth-Heinemann, London, 176-220.
14 Goel A., and Ram V. J. (2009) Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron, 65 (38) 7865-7913.
15 Ranu B. C., Banerjee S., and Roy S. (2008) A task specific basic ionic liquid, [bmIm]OH-promoted efficient, green and one-pot synthesis of tetrahydro benzo[b]pyran derivatives. Indian J. Chem. Soc., 47 (7) 1108-1112.
16 Babu N. S., Pasha N., Rao V. K. T., Prasad S. P. S., and Lingaiah N. (2008) A heterogeneous strong basic Mg/ La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans. Tetrahedron Lett., 49 (17) 2730-2733.
17 Yu L. Q., Liu F., and You Q. D. (2009) One-pot synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by amines in aqueous media. Org. Prep. Proced. Int., 41 (1) 77-82.
18 Pore D. M., Undale K. A., Dongare B. B., and Desai U. V. (2009) Potassium phosphate catalyzed a rapid three-component synthesis of tetrahydrobenzo[b]pyran at ambient temperature. Catal. Lett., 132 (1) 104-108.
19 Gurumurthi S., Sundari V., and Valliappan R. (2009) An efficient and convenient approach to synthesis of tetrahydrobenzo[b]pyran derivatives using tetrabutyl ammonium bromide as catalyst. J. Chem., 6 (S1) 466-472.
20 Safaei-Ghomi J., Teymuri R., Shahbazi-Alavi H., and Ziarati A. (2013) SnCl2/nano SiO2: A green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans. Chin. Chem. Lett., 24 (10) 921-925.
21 Pratap U. R., Jawale D. V., Netankar P. D., and Mane R. A. (2011) Baker’s yeast catalyzed one-pot three-component synthesis of polyfunctionalized 4H-pyrans. Tetrahedron Lett., 52 (44) 5817-5819.
22 Jatto E. O., Asia I. O., Egbon E. E., Otutu J. O., Chukwuedo M. E., and Ewansiha C. J. (2010) Treatment of waste water from food industry using snail shell. Academia Arena, 2 (1) 32-36.
23 Kumar G. S., Sathish L., Govindan R., and Girija E. K. (2015) Utilization of snail shells to synthesis hydroxyapatite nanorods for orthopedic applications. RSC Adv., 5 (49) 39544-39548.
24 a) Minyan R., Changyin D., and Changhua A. (2011) Large-Scale growth of tubular aragonite whiskers through a MgCl2-Assisted hydrothermal process. Materials, 4 (8) 1375-1383. b) Hu Z., and Deng Y. (2004) Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate. Powder Technology, 140 (1-2) 10-16. c) Islam N. K., Ali M. E., Bakar M. Z. B. A., Loqman M. Y., Islam A., Islam M. S., Rahman M. M., and Ullah M., A. (2013) Novel catalytic method for the synthesis of spherical aragonite nanoparticles from cockle shells. Powder Technology, 246, 434-440. d) Chen J., and Xiang L. (2009) Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technology, 189, 64-69. e) Ma H. Y., and Lee I. S. (2006) Characterization of vaterite in low quality freshwater-cultured pearls. Mater. Sci. Eng. C, 26 (1) 721-723.
25 Khurana J. M., and Chaudhary A. (2012) Efficient and green synthesis of 4H-pyrans and 4H-pyrano[2,3-c] pyrazoles catalyzed by task-specific ionic liquid [bmim]OH under solvent-free conditions. Green Chem. Lett. Rev., 5 (4) 633-638.
26 Banerjee S., Horn A., Khatri H., and Sereda G. (2011) A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 52 (16) 1878-1881.
2 Wu J. Y. C., Fong W. F., Zhang J. X., Leung C. H., Kwong H. L., Yang M. S., Li D., and Cheung H. Y. (2003) Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur. J. Pharmacol., 473 (1) 9-17.
3 Raj T., Bhatia R. K., Kapur A., Sharma M., Saxena A. K., and Ishar M. P. S. (2010) Cytotoxic activity of 3-(5-phenyl-3H-[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4H-chromene-3-carbothioic acid N-phenylamides. Eur. J. Med. Chem., 45 (2) 790-794.
4 Rueping M., Sugiono E., and Merino E. (2008) Asymmetric organocatalysis: An efficient enantioselective access to benzopyranes and chromenes. Chem. Eur. J., 14 (21) 6329-6332.
5 Brahmachari G., and Banerjee B. (2014) Facile and one-pot access to diverse and densely functionalized 2 amino-3-cyano 4H pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustainable Chem. Eng., 2 (3) 411-422.
6 Flavin M. T., Rizzo J. D., Khilevich A., Kucherenko A., Sheinkman A. K., Vilaychack V., Lin L., Chen W., Greenwood E. M., Pengsuparp T., Pezzuto J. M., Hughes S. H., Flavin T. M., Cibulski M., Boulanger W. A., Shone R. L., and Xu Z. Q. (1996) Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (±)-calanolide A and its enantiomers. J. Med. Chem., 39 (6) 1303-1313.
7 Moon D. O., Kim K. C., Jin C. Y., Han M. H., Park C., Lee K. J., Park Y. M., Choi Y. H., and Kim G. Y. (2007) Inhibitory effects of eicosapentaenoic acid on lipopoly saccharide-induced activation in BV2 microglia. Int. Immunopharmacol., 7 (2) 222-229.
8 De Andrade-Neto V. F., Goulart M. O., Da Silva Filho J. F., Da Silva M. J., Pinto M. D. C., Pinto A.V., Zalis M. G., Carvalho L. H., and Krettli A.U. (2004) Antimalarial activity of phenazines from lapachol,-lapachone and its derivatives against plasmodium falciparum in vitro and plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 14 (5) 1145-1149.
9 Sacau E. P., Braun A. E., Ravelo A. G., Yapu D. J., and Turba A. G. (2005) Antiplasmodial activity of naphtha quinones related to lapachol and -lapachone. Chem. Biodiversity, 2 (2) 264-274.
10 Morgan L. R., Jursic B. S., Hooper C. L., Neumann D. M., Thangaraj K., and Leblance B. (2002) Anticancer activity for 4,4’-dihydroxybenzophenone-2,4-dinitrophenyl hydrazone (A-007) analogues and their abilities to interact with lymphoendothelial cell surface markers. Bioorg. Med. Chem. Lett., 12 (23) 3407-3411.
11 Kumar A., Maurya R. A., Sharma S. A., Ahmad P., Singh A. B., Bhatia G., and Srivastava A. K. (2009) Pyranocoumarins: A new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg. Med. Chem. Lett., 19 (22) 6447-6451.
12 Feuer G. (1974) Progress in Medicinal Chemistry, Ellis G. P., and West G. P. (Eds) North-Holland Publishing Company: New York, 10, 85-115.
13 Dean F. M. (1963) Naturally Occurring Oxygen Ring Compounds, Butterworth-Heinemann, London, 176-220.
14 Goel A., and Ram V. J. (2009) Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron, 65 (38) 7865-7913.
15 Ranu B. C., Banerjee S., and Roy S. (2008) A task specific basic ionic liquid, [bmIm]OH-promoted efficient, green and one-pot synthesis of tetrahydro benzo[b]pyran derivatives. Indian J. Chem. Soc., 47 (7) 1108-1112.
16 Babu N. S., Pasha N., Rao V. K. T., Prasad S. P. S., and Lingaiah N. (2008) A heterogeneous strong basic Mg/ La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans. Tetrahedron Lett., 49 (17) 2730-2733.
17 Yu L. Q., Liu F., and You Q. D. (2009) One-pot synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by amines in aqueous media. Org. Prep. Proced. Int., 41 (1) 77-82.
18 Pore D. M., Undale K. A., Dongare B. B., and Desai U. V. (2009) Potassium phosphate catalyzed a rapid three-component synthesis of tetrahydrobenzo[b]pyran at ambient temperature. Catal. Lett., 132 (1) 104-108.
19 Gurumurthi S., Sundari V., and Valliappan R. (2009) An efficient and convenient approach to synthesis of tetrahydrobenzo[b]pyran derivatives using tetrabutyl ammonium bromide as catalyst. J. Chem., 6 (S1) 466-472.
20 Safaei-Ghomi J., Teymuri R., Shahbazi-Alavi H., and Ziarati A. (2013) SnCl2/nano SiO2: A green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans. Chin. Chem. Lett., 24 (10) 921-925.
21 Pratap U. R., Jawale D. V., Netankar P. D., and Mane R. A. (2011) Baker’s yeast catalyzed one-pot three-component synthesis of polyfunctionalized 4H-pyrans. Tetrahedron Lett., 52 (44) 5817-5819.
22 Jatto E. O., Asia I. O., Egbon E. E., Otutu J. O., Chukwuedo M. E., and Ewansiha C. J. (2010) Treatment of waste water from food industry using snail shell. Academia Arena, 2 (1) 32-36.
23 Kumar G. S., Sathish L., Govindan R., and Girija E. K. (2015) Utilization of snail shells to synthesis hydroxyapatite nanorods for orthopedic applications. RSC Adv., 5 (49) 39544-39548.
24 a) Minyan R., Changyin D., and Changhua A. (2011) Large-Scale growth of tubular aragonite whiskers through a MgCl2-Assisted hydrothermal process. Materials, 4 (8) 1375-1383. b) Hu Z., and Deng Y. (2004) Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate. Powder Technology, 140 (1-2) 10-16. c) Islam N. K., Ali M. E., Bakar M. Z. B. A., Loqman M. Y., Islam A., Islam M. S., Rahman M. M., and Ullah M., A. (2013) Novel catalytic method for the synthesis of spherical aragonite nanoparticles from cockle shells. Powder Technology, 246, 434-440. d) Chen J., and Xiang L. (2009) Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technology, 189, 64-69. e) Ma H. Y., and Lee I. S. (2006) Characterization of vaterite in low quality freshwater-cultured pearls. Mater. Sci. Eng. C, 26 (1) 721-723.
25 Khurana J. M., and Chaudhary A. (2012) Efficient and green synthesis of 4H-pyrans and 4H-pyrano[2,3-c] pyrazoles catalyzed by task-specific ionic liquid [bmim]OH under solvent-free conditions. Green Chem. Lett. Rev., 5 (4) 633-638.
26 Banerjee S., Horn A., Khatri H., and Sereda G. (2011) A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 52 (16) 1878-1881.