Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Current Chemistry Letters » Silica-based sulfonic acid (MCM-41-SO3H): a practical and efficient catalyst for the synthesis of highly substituted quinolines under solvent-free conditions at ambient temperature

Journals

  • IJIEC (726)
  • MSL (2637)
  • DSL (649)
  • CCL (495)
  • USCM (1092)
  • ESM (404)
  • AC (557)
  • JPM (247)
  • IJDS (912)
  • JFS (91)
  • HE (21)

CCL Volumes

    • Volume 1 (23)
      • Issue 1 (7)
      • Issue 2 (5)
      • Issue 3 (6)
      • Issue 4 (5)
    • Volume 2 (26)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (7)
    • Volume 3 (30)
      • Issue 1 (7)
      • Issue 2 (10)
      • Issue 3 (8)
      • Issue 4 (5)
    • Volume 4 (21)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (6)
      • Issue 4 (5)
    • Volume 5 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 6 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 7 (15)
      • Issue 1 (4)
      • Issue 2 (4)
      • Issue 3 (4)
      • Issue 4 (3)
    • Volume 8 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 9 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 10 (43)
      • Issue 1 (5)
      • Issue 2 (7)
      • Issue 3 (17)
      • Issue 4 (14)
    • Volume 11 (43)
      • Issue 1 (14)
      • Issue 2 (11)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 12 (78)
      • Issue 1 (21)
      • Issue 2 (22)
      • Issue 3 (20)
      • Issue 4 (15)
    • Volume 13 (68)
      • Issue 1 (23)
      • Issue 2 (17)
      • Issue 3 (16)
      • Issue 4 (12)
    • Volume 14 (68)
      • Issue 1 (20)
      • Issue 2 (13)
      • Issue 3 (22)
      • Issue 4 (13)

Keywords

Jordan(161)
Supply chain management(160)
Vietnam(148)
Customer satisfaction(120)
Performance(113)
Supply chain(108)
Service quality(98)
Tehran Stock Exchange(94)
Competitive advantage(93)
SMEs(86)
optimization(84)
Financial performance(83)
Trust(81)
Job satisfaction(79)
Social media(78)
Factor analysis(78)
TOPSIS(78)
Knowledge Management(77)
Genetic Algorithm(76)
Sustainability(76)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(59)
Endri Endri(45)
Muhammad Alshurideh(42)
Hotlan Siagian(39)
Jumadil Saputra(36)
Muhammad Turki Alshurideh(35)
Dmaithan Almajali(35)
Barween Al Kurdi(32)
Basrowi Basrowi(31)
Hassan Ghodrati(31)
Ahmad Makui(31)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Sulieman Ibraheem Shelash Al-Hawary(28)
Prasadja Ricardianto(28)
Sautma Ronni Basana(27)
Haitham M. Alzoubi(27)


» Show all authors

Countries

Iran(2162)
Indonesia(1276)
Jordan(783)
India(779)
Vietnam(500)
Saudi Arabia(438)
Malaysia(438)
United Arab Emirates(220)
China(181)
Thailand(151)
United States(109)
Turkey(102)
Ukraine(99)
Egypt(95)
Canada(89)
Pakistan(84)
Peru(83)
United Kingdom(77)
Nigeria(77)
Morocco(73)


» Show all countries

Current Chemistry Letters

ISSN 1927-730x (Online) - ISSN 1927-7296 (Print)
Quarterly Publication
Volume 3 Issue 2 pp. 125-132 , 2014

Silica-based sulfonic acid (MCM-41-SO3H): a practical and efficient catalyst for the synthesis of highly substituted quinolines under solvent-free conditions at ambient temperature Pages 125-132 Right click to download the paper Download PDF

Authors: Ali Maleki, Shahrzad Javanshir, Shahin Sharifi

Keywords: Friedlander reaction, MCM-41-SO3H, Quinolines, Silica-based sulfonic acid, Solvent-free

Abstract: In this work, a variety of highly substituted quinolines were readily synthesized via Friedlander annulation using Br?nsted acid silica-based sulfonic acid as a modified catalyst under solvent-free conditions at room temperature. This efficient procedure has the advantages of giving the target compounds in high yields, short reaction times, simple workup procedure, reusability of the catalyst, and environmentally benign conditions.

How to cite this paper
Maleki, A., Javanshir, S & Sharifi, S. (2014). Silica-based sulfonic acid (MCM-41-SO3H): a practical and efficient catalyst for the synthesis of highly substituted quinolines under solvent-free conditions at ambient temperature.Current Chemistry Letters, 3(2), 125-132.

Refrences
1 (a) Corma A., and Garcia H. (2006) Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis. Adv. Synth. Catal., 348, 1391–1412; (b) Corma A., and Garcia H. (2003) Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev., 103, 4307–4366; (c) Corma A., and Garcia H. (2002) Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems. Chem. Rev., 102, 3837–3892.

2 (a) David E., Pellet-Rostaing S., and Lemaire M. (2007) Heck-like coupling and Pictet–Spengler reaction for the synthesis of benzothieno[3,2-c]quinolines. Tetrahedron, 63, 8999–9006; (b) Genovese S., Epifano F., Marcotullio M.C., Pelucchini C., and Curini M. (2011) An alternative quinoline synthesis by via Friedl?nder reaction catalyzed by Yb(OTf)3. Tetrahedron Lett., 52, 3474–3477.

3 Yang D., Jiang K., Li J., and Xu F. (2007) Synthesis and characterization of quinoline derivatives via the Friedl?nder reaction. Tetrahedron, 63, 7654–7658.

4 Vander Mierde H., van der Voort P., and Verpoort F. (2008) Base-mediated synthesis of quinolines: an unexpected cyclization reaction between 2-aminobenzylalcohol and ketones. Tetrahedron Lett., 49, 6893–6895.

5 De Paolis O., Teixeira L., and Torok B. (2009) Synthesis of quinolines by a solid acid-catalyzed microwave-assisted domino cyclization–aromatization approach. Tetrahedron Lett., 50, 2939–2942.

6 Nagarajan S., and Mohan Das T. (2009) Facile one-pot synthesis of sugar-quinoline derivatives. Carbohyd. Res., 344, 1028–1031.

7 Dobner O., and von Miller W. (1881) Ueber eine dem chinolin homologe base. Ber. Dtsch. Chem. Ges., 14, 2812–2817.

8 Skraup Z. H. (1880) Eine synthese des chinolins. Ber. Dtsch. Chem. Ges., 13, 2086–2087.

9 Brosius R., Gammon D., van Laar F., van Steen E., Sels B., and Jacobs P. (2006) Vapour-phase synthesis of 2-methyl- and 4-methylquinoline over BEA* zeolites. J. Catal., 239, 362–368.

10 Wang L., Hua L., Chen H., Sui Y., and Shen W. (2009) One-pot synthesis of quinoline-4-carboxylic acid derivatives in water: Ytterbium perfluorooctanoate catalyzed Doebner reaction. J. Fluorine Chem., 130, 406–409.

11 Jia C.S., Zhang Z., Tu S.J., and Wang G.W. (2006) Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions: comparative study of microwave irradiation versus conventional heating. Org. Biomol. Chem., 4, 104–110.

12 Wang G.W., Jia C.S., and Dong Y.W. (2006) Benign and highly efficient synthesis of quinolines from 2-aminoarylketone or 2-aminoarylaldehyde and carbonyl compounds mediated by hydrochloric acid in water. Tetrahedron Lett., 47, 1059–1063.

13 Muscia G.C., Bollini M.J., Carnevale P.A., Bruno M.S., and Asis E. (2006) Microwave-assisted Friedl?nder synthesis of quinolines derivatives as potential antiparasitic agents. Tetrahedron Lett., 47, 8811–8815.

14 Bose D.S., and Kumar R.K. (2006) An efficient, high yielding protocol for the synthesis of functionalized quinolines via the tandem addition/annulation reaction of o-aminoaryl ketones with ?-methylene ketones. Tetrahedron Lett., 47, 813–816.

15 Hu Y.Z., Zang G., and Thummel R. P. (2003) Friedl?nder approach for the incorporation of 6-bromoquinoline into novel chelating ligands. Org. Lett., 5, 2251–2253.

16 Nedeltchev A.K., Han H., and Bhowmik P. K. (2010) Photoactive amorphous molecular materials based on quinoline amines and their synthesis by Friedl?nder condensation reaction. Tetrahedron, 66, 9319–9326.

17 Shaabani A., Soleimani E., and Badri Z. (2006) Silica sulfuric acid as an inexpensive and recyclable solid acid catalyzed efficient synthesis of quinolines. Monatsh. Chem., 137, 181–184.

18 Shaabani A., Soleimani E., and Badri Z. (2007) Triflouroacetic acid as an efficient catalyst for the synthesis of quinolines. Synth. Commun., 37, 629–635.

19 Abdollahi-Alibeik M., and Pouriayevali M. (2012) Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines. Catal. Commun., 22, 13–18.

20 (a) Maleki A. (2013) One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Lett., 54, 2055–2059; (b) Kazemi B., Javanshir Sh., Maleki A., Safari M., and Khavasi H.R. (2012) An efficient synthesis of 4H-chromene, 4H-pyran, and oxepine derivatives via one-pot three-component tandem reactions. Tetrahedron Lett., 53, 6977–6981; (c) Maleki A. (2012) Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron, 68, 7827–7833.

21 Dominguez-Fernandez F., Lopez-Sanz J., Perez-Mayoral E., Bek D., Martin-Arand R.M., Lopez-Peinado A.J., and Cejka J. (2009) Novel basic mesoporous catalysts for Friedl?nder reaction from 2-aminoaryl ketones: Quinolin-2(1H)-ones vs. quinolines. Chem. Cat. Chem., 1, 241–243.

22 Sadjadi S., Shiri S., Hekmatshoar R., and Beheshtiha Y.S. (2009) Nanocrystalline aluminium oxide: a mild and efficient reusable catalyst for the one-pot synthesis of poly-substituted quinolines via Friedlander hetero-annulation. Monatsh. Chem., 140, 1343–1347.

23 Hosseini-Sarvari M. (2009) Commercial ZrO2 as a new, efficient, and reusable catalyst for the one-step synthesis of quinolines in solvent-free conditions. Can. J. Chem., 87, 1122–1126.

24 (a) Hasaninejad A., Shekouhy M., and Zare A. (2012) Silica nanoparticles efficiently catalyzed synthesis of quinolines and quinoxalines. Catal. Sci. Technol., 2, 201–214; (b) Hasaninejad A., Zare A., Shekouhy M., and Ameri-Rad, J. (2011) Sulfuric acid-modified PEG-6000 (PEG-OSO3H): an efficient, bio-degradable and reusable polymeric catalyst for the solvent-free synthesis of poly-substituted quinolines under microwave irradiation. Green Chem., 13, 958–964.

25 Ghassamipour S., and Sardarian A. R. (2009) Friedl?nder synthesis of poly-substituted quinolines in the presence of dodecylphosphonic acid (DPA) as a highly efficient, recyclable and novel catalyst in aqueous media and solvent-free conditions. Tetrahedron Lett., 50, 514–519.

26 Shaabani A., Rahmati A., and Badri Z. (2008) Sulfonated cellulose and starch: New biodegradable and renewable solid acid catalysts for efficient synthesis of quinolines. Catal. Commun., 9, 13–16.

27 Rostamizadeh S., Amani A.M., Mahdavinia G.H., Sepehrian H., and Ebrahimi S. (2010) Synthesis of some novel 2-aryl-substituted2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions using MCM-41-SO3H as a highly efficient sulfonic acid. Synthesis, 1356–1360.

28 Zanjanchi M.A., and Asgari Sh. (2004) Incorporation of aluminum into the framework of mesoporous MCM-41: the contribution of diffuse reflectance spectroscopy. Solid State Ionics, 171, 277–282.

29 Voegtlin A.C., Matijasic A., Patarin J., Sauerland C., Grillet Y., and Huve L. (1997) Room-temperature synthesis of silicate mesoporous MCM-41-type materials: influence of the synthesis pH on the porosity of the materials obtained. Micropor. Mesopor. Mater., 10, 137–147.
  • 17
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Current Chemistry Letters | Year: 2014 | Volume: 3 | Issue: 2 | Views: 3005 | Reviews: 0

Related Articles:
  • Mesoporous SBA-15 nanoparticles: An efficient and eco-friendly Catalyst for ...
  • Solvent- and catalyst-free synthesis of 2-aryl(heteroaryl)-substituted benz ...
  • Ultrasound assisted synthesis of enaminones using Nickel oxide
  • Microwave-assisted solvent-free synthesis of 14-aryl/alkyl-14H-dibenzo[a,j] ...
  • BF3.SiO2: an efficient catalyst for the synthesis of azo dyes at room tempe ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com