How to cite this paper
Maleki, A., Javanshir, S & Sharifi, S. (2014). Silica-based sulfonic acid (MCM-41-SO3H): a practical and efficient catalyst for the synthesis of highly substituted quinolines under solvent-free conditions at ambient temperature.Current Chemistry Letters, 3(2), 125-132.
Refrences
1 (a) Corma A., and Garcia H. (2006) Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis. Adv. Synth. Catal., 348, 1391–1412; (b) Corma A., and Garcia H. (2003) Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev., 103, 4307–4366; (c) Corma A., and Garcia H. (2002) Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems. Chem. Rev., 102, 3837–3892.
2 (a) David E., Pellet-Rostaing S., and Lemaire M. (2007) Heck-like coupling and Pictet–Spengler reaction for the synthesis of benzothieno[3,2-c]quinolines. Tetrahedron, 63, 8999–9006; (b) Genovese S., Epifano F., Marcotullio M.C., Pelucchini C., and Curini M. (2011) An alternative quinoline synthesis by via Friedl?nder reaction catalyzed by Yb(OTf)3. Tetrahedron Lett., 52, 3474–3477.
3 Yang D., Jiang K., Li J., and Xu F. (2007) Synthesis and characterization of quinoline derivatives via the Friedl?nder reaction. Tetrahedron, 63, 7654–7658.
4 Vander Mierde H., van der Voort P., and Verpoort F. (2008) Base-mediated synthesis of quinolines: an unexpected cyclization reaction between 2-aminobenzylalcohol and ketones. Tetrahedron Lett., 49, 6893–6895.
5 De Paolis O., Teixeira L., and Torok B. (2009) Synthesis of quinolines by a solid acid-catalyzed microwave-assisted domino cyclization–aromatization approach. Tetrahedron Lett., 50, 2939–2942.
6 Nagarajan S., and Mohan Das T. (2009) Facile one-pot synthesis of sugar-quinoline derivatives. Carbohyd. Res., 344, 1028–1031.
7 Dobner O., and von Miller W. (1881) Ueber eine dem chinolin homologe base. Ber. Dtsch. Chem. Ges., 14, 2812–2817.
8 Skraup Z. H. (1880) Eine synthese des chinolins. Ber. Dtsch. Chem. Ges., 13, 2086–2087.
9 Brosius R., Gammon D., van Laar F., van Steen E., Sels B., and Jacobs P. (2006) Vapour-phase synthesis of 2-methyl- and 4-methylquinoline over BEA* zeolites. J. Catal., 239, 362–368.
10 Wang L., Hua L., Chen H., Sui Y., and Shen W. (2009) One-pot synthesis of quinoline-4-carboxylic acid derivatives in water: Ytterbium perfluorooctanoate catalyzed Doebner reaction. J. Fluorine Chem., 130, 406–409.
11 Jia C.S., Zhang Z., Tu S.J., and Wang G.W. (2006) Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions: comparative study of microwave irradiation versus conventional heating. Org. Biomol. Chem., 4, 104–110.
12 Wang G.W., Jia C.S., and Dong Y.W. (2006) Benign and highly efficient synthesis of quinolines from 2-aminoarylketone or 2-aminoarylaldehyde and carbonyl compounds mediated by hydrochloric acid in water. Tetrahedron Lett., 47, 1059–1063.
13 Muscia G.C., Bollini M.J., Carnevale P.A., Bruno M.S., and Asis E. (2006) Microwave-assisted Friedl?nder synthesis of quinolines derivatives as potential antiparasitic agents. Tetrahedron Lett., 47, 8811–8815.
14 Bose D.S., and Kumar R.K. (2006) An efficient, high yielding protocol for the synthesis of functionalized quinolines via the tandem addition/annulation reaction of o-aminoaryl ketones with ?-methylene ketones. Tetrahedron Lett., 47, 813–816.
15 Hu Y.Z., Zang G., and Thummel R. P. (2003) Friedl?nder approach for the incorporation of 6-bromoquinoline into novel chelating ligands. Org. Lett., 5, 2251–2253.
16 Nedeltchev A.K., Han H., and Bhowmik P. K. (2010) Photoactive amorphous molecular materials based on quinoline amines and their synthesis by Friedl?nder condensation reaction. Tetrahedron, 66, 9319–9326.
17 Shaabani A., Soleimani E., and Badri Z. (2006) Silica sulfuric acid as an inexpensive and recyclable solid acid catalyzed efficient synthesis of quinolines. Monatsh. Chem., 137, 181–184.
18 Shaabani A., Soleimani E., and Badri Z. (2007) Triflouroacetic acid as an efficient catalyst for the synthesis of quinolines. Synth. Commun., 37, 629–635.
19 Abdollahi-Alibeik M., and Pouriayevali M. (2012) Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines. Catal. Commun., 22, 13–18.
20 (a) Maleki A. (2013) One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Lett., 54, 2055–2059; (b) Kazemi B., Javanshir Sh., Maleki A., Safari M., and Khavasi H.R. (2012) An efficient synthesis of 4H-chromene, 4H-pyran, and oxepine derivatives via one-pot three-component tandem reactions. Tetrahedron Lett., 53, 6977–6981; (c) Maleki A. (2012) Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron, 68, 7827–7833.
21 Dominguez-Fernandez F., Lopez-Sanz J., Perez-Mayoral E., Bek D., Martin-Arand R.M., Lopez-Peinado A.J., and Cejka J. (2009) Novel basic mesoporous catalysts for Friedl?nder reaction from 2-aminoaryl ketones: Quinolin-2(1H)-ones vs. quinolines. Chem. Cat. Chem., 1, 241–243.
22 Sadjadi S., Shiri S., Hekmatshoar R., and Beheshtiha Y.S. (2009) Nanocrystalline aluminium oxide: a mild and efficient reusable catalyst for the one-pot synthesis of poly-substituted quinolines via Friedlander hetero-annulation. Monatsh. Chem., 140, 1343–1347.
23 Hosseini-Sarvari M. (2009) Commercial ZrO2 as a new, efficient, and reusable catalyst for the one-step synthesis of quinolines in solvent-free conditions. Can. J. Chem., 87, 1122–1126.
24 (a) Hasaninejad A., Shekouhy M., and Zare A. (2012) Silica nanoparticles efficiently catalyzed synthesis of quinolines and quinoxalines. Catal. Sci. Technol., 2, 201–214; (b) Hasaninejad A., Zare A., Shekouhy M., and Ameri-Rad, J. (2011) Sulfuric acid-modified PEG-6000 (PEG-OSO3H): an efficient, bio-degradable and reusable polymeric catalyst for the solvent-free synthesis of poly-substituted quinolines under microwave irradiation. Green Chem., 13, 958–964.
25 Ghassamipour S., and Sardarian A. R. (2009) Friedl?nder synthesis of poly-substituted quinolines in the presence of dodecylphosphonic acid (DPA) as a highly efficient, recyclable and novel catalyst in aqueous media and solvent-free conditions. Tetrahedron Lett., 50, 514–519.
26 Shaabani A., Rahmati A., and Badri Z. (2008) Sulfonated cellulose and starch: New biodegradable and renewable solid acid catalysts for efficient synthesis of quinolines. Catal. Commun., 9, 13–16.
27 Rostamizadeh S., Amani A.M., Mahdavinia G.H., Sepehrian H., and Ebrahimi S. (2010) Synthesis of some novel 2-aryl-substituted2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions using MCM-41-SO3H as a highly efficient sulfonic acid. Synthesis, 1356–1360.
28 Zanjanchi M.A., and Asgari Sh. (2004) Incorporation of aluminum into the framework of mesoporous MCM-41: the contribution of diffuse reflectance spectroscopy. Solid State Ionics, 171, 277–282.
29 Voegtlin A.C., Matijasic A., Patarin J., Sauerland C., Grillet Y., and Huve L. (1997) Room-temperature synthesis of silicate mesoporous MCM-41-type materials: influence of the synthesis pH on the porosity of the materials obtained. Micropor. Mesopor. Mater., 10, 137–147.
2 (a) David E., Pellet-Rostaing S., and Lemaire M. (2007) Heck-like coupling and Pictet–Spengler reaction for the synthesis of benzothieno[3,2-c]quinolines. Tetrahedron, 63, 8999–9006; (b) Genovese S., Epifano F., Marcotullio M.C., Pelucchini C., and Curini M. (2011) An alternative quinoline synthesis by via Friedl?nder reaction catalyzed by Yb(OTf)3. Tetrahedron Lett., 52, 3474–3477.
3 Yang D., Jiang K., Li J., and Xu F. (2007) Synthesis and characterization of quinoline derivatives via the Friedl?nder reaction. Tetrahedron, 63, 7654–7658.
4 Vander Mierde H., van der Voort P., and Verpoort F. (2008) Base-mediated synthesis of quinolines: an unexpected cyclization reaction between 2-aminobenzylalcohol and ketones. Tetrahedron Lett., 49, 6893–6895.
5 De Paolis O., Teixeira L., and Torok B. (2009) Synthesis of quinolines by a solid acid-catalyzed microwave-assisted domino cyclization–aromatization approach. Tetrahedron Lett., 50, 2939–2942.
6 Nagarajan S., and Mohan Das T. (2009) Facile one-pot synthesis of sugar-quinoline derivatives. Carbohyd. Res., 344, 1028–1031.
7 Dobner O., and von Miller W. (1881) Ueber eine dem chinolin homologe base. Ber. Dtsch. Chem. Ges., 14, 2812–2817.
8 Skraup Z. H. (1880) Eine synthese des chinolins. Ber. Dtsch. Chem. Ges., 13, 2086–2087.
9 Brosius R., Gammon D., van Laar F., van Steen E., Sels B., and Jacobs P. (2006) Vapour-phase synthesis of 2-methyl- and 4-methylquinoline over BEA* zeolites. J. Catal., 239, 362–368.
10 Wang L., Hua L., Chen H., Sui Y., and Shen W. (2009) One-pot synthesis of quinoline-4-carboxylic acid derivatives in water: Ytterbium perfluorooctanoate catalyzed Doebner reaction. J. Fluorine Chem., 130, 406–409.
11 Jia C.S., Zhang Z., Tu S.J., and Wang G.W. (2006) Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions: comparative study of microwave irradiation versus conventional heating. Org. Biomol. Chem., 4, 104–110.
12 Wang G.W., Jia C.S., and Dong Y.W. (2006) Benign and highly efficient synthesis of quinolines from 2-aminoarylketone or 2-aminoarylaldehyde and carbonyl compounds mediated by hydrochloric acid in water. Tetrahedron Lett., 47, 1059–1063.
13 Muscia G.C., Bollini M.J., Carnevale P.A., Bruno M.S., and Asis E. (2006) Microwave-assisted Friedl?nder synthesis of quinolines derivatives as potential antiparasitic agents. Tetrahedron Lett., 47, 8811–8815.
14 Bose D.S., and Kumar R.K. (2006) An efficient, high yielding protocol for the synthesis of functionalized quinolines via the tandem addition/annulation reaction of o-aminoaryl ketones with ?-methylene ketones. Tetrahedron Lett., 47, 813–816.
15 Hu Y.Z., Zang G., and Thummel R. P. (2003) Friedl?nder approach for the incorporation of 6-bromoquinoline into novel chelating ligands. Org. Lett., 5, 2251–2253.
16 Nedeltchev A.K., Han H., and Bhowmik P. K. (2010) Photoactive amorphous molecular materials based on quinoline amines and their synthesis by Friedl?nder condensation reaction. Tetrahedron, 66, 9319–9326.
17 Shaabani A., Soleimani E., and Badri Z. (2006) Silica sulfuric acid as an inexpensive and recyclable solid acid catalyzed efficient synthesis of quinolines. Monatsh. Chem., 137, 181–184.
18 Shaabani A., Soleimani E., and Badri Z. (2007) Triflouroacetic acid as an efficient catalyst for the synthesis of quinolines. Synth. Commun., 37, 629–635.
19 Abdollahi-Alibeik M., and Pouriayevali M. (2012) Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines. Catal. Commun., 22, 13–18.
20 (a) Maleki A. (2013) One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Lett., 54, 2055–2059; (b) Kazemi B., Javanshir Sh., Maleki A., Safari M., and Khavasi H.R. (2012) An efficient synthesis of 4H-chromene, 4H-pyran, and oxepine derivatives via one-pot three-component tandem reactions. Tetrahedron Lett., 53, 6977–6981; (c) Maleki A. (2012) Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron, 68, 7827–7833.
21 Dominguez-Fernandez F., Lopez-Sanz J., Perez-Mayoral E., Bek D., Martin-Arand R.M., Lopez-Peinado A.J., and Cejka J. (2009) Novel basic mesoporous catalysts for Friedl?nder reaction from 2-aminoaryl ketones: Quinolin-2(1H)-ones vs. quinolines. Chem. Cat. Chem., 1, 241–243.
22 Sadjadi S., Shiri S., Hekmatshoar R., and Beheshtiha Y.S. (2009) Nanocrystalline aluminium oxide: a mild and efficient reusable catalyst for the one-pot synthesis of poly-substituted quinolines via Friedlander hetero-annulation. Monatsh. Chem., 140, 1343–1347.
23 Hosseini-Sarvari M. (2009) Commercial ZrO2 as a new, efficient, and reusable catalyst for the one-step synthesis of quinolines in solvent-free conditions. Can. J. Chem., 87, 1122–1126.
24 (a) Hasaninejad A., Shekouhy M., and Zare A. (2012) Silica nanoparticles efficiently catalyzed synthesis of quinolines and quinoxalines. Catal. Sci. Technol., 2, 201–214; (b) Hasaninejad A., Zare A., Shekouhy M., and Ameri-Rad, J. (2011) Sulfuric acid-modified PEG-6000 (PEG-OSO3H): an efficient, bio-degradable and reusable polymeric catalyst for the solvent-free synthesis of poly-substituted quinolines under microwave irradiation. Green Chem., 13, 958–964.
25 Ghassamipour S., and Sardarian A. R. (2009) Friedl?nder synthesis of poly-substituted quinolines in the presence of dodecylphosphonic acid (DPA) as a highly efficient, recyclable and novel catalyst in aqueous media and solvent-free conditions. Tetrahedron Lett., 50, 514–519.
26 Shaabani A., Rahmati A., and Badri Z. (2008) Sulfonated cellulose and starch: New biodegradable and renewable solid acid catalysts for efficient synthesis of quinolines. Catal. Commun., 9, 13–16.
27 Rostamizadeh S., Amani A.M., Mahdavinia G.H., Sepehrian H., and Ebrahimi S. (2010) Synthesis of some novel 2-aryl-substituted2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions using MCM-41-SO3H as a highly efficient sulfonic acid. Synthesis, 1356–1360.
28 Zanjanchi M.A., and Asgari Sh. (2004) Incorporation of aluminum into the framework of mesoporous MCM-41: the contribution of diffuse reflectance spectroscopy. Solid State Ionics, 171, 277–282.
29 Voegtlin A.C., Matijasic A., Patarin J., Sauerland C., Grillet Y., and Huve L. (1997) Room-temperature synthesis of silicate mesoporous MCM-41-type materials: influence of the synthesis pH on the porosity of the materials obtained. Micropor. Mesopor. Mater., 10, 137–147.