The quantum-chemical modeling mechanism of the [4+2]-cycloaddition reaction of 2,3 dimethylbuta-1,3-diene and methyl acrylate was conducted. Its qualitative aspects were analyzed at the molecular level by the program MOPAC2012 and semiempirical method RM1. The potential energy surfaces of 2,3 dimethylbuta-1,3-diene and methyl acrylate [4+2] cycloaddition possible reaction pathways were constructed by restricted and unrestricted Hartree-Fock approximation. It has been established that the molecule of the final product methyl-3,4-dimethylcyclohex-3-encarboxylate has the half-chair shape, wherein the carboalkoxyl group is in the exo-orientation. Interaction between molecules of 2,3 dimethylbuta-1,3-diene and methyl acrylate occurs by a two-step mechanism more likely than one-step, since the activation parameters of this interaction maximum coincide with the experimental data.