This paper deals with free vibrations of the axially functionally graded (AFG) horseshoe arch. The modulus of elasticity and the mass density of AFG material of arch are chosen as a univariate quadratic function. The differential equations with the boundary conditions that govern the free vibration of such arch are derived and numerically solved to calculate natural frequencies and mode shapes. Natural frequencies of this study agree well with those of the finite element ADINA. Parametric studies of the geometrical and mechanical properties of the arch on frequencies and mode shapes are performed and extensively discussed.