Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Authors » Meng-Ru You

Journals

  • IJIEC (726)
  • MSL (2637)
  • DSL (649)
  • CCL (495)
  • USCM (1092)
  • ESM (404)
  • AC (557)
  • JPM (247)
  • IJDS (912)
  • JFS (91)
  • HE (21)
  • SCI (11)

Keywords

Supply chain management(163)
Jordan(161)
Vietnam(148)
Customer satisfaction(120)
Performance(113)
Supply chain(108)
Service quality(98)
Tehran Stock Exchange(94)
Competitive advantage(93)
SMEs(86)
optimization(84)
Financial performance(83)
Trust(81)
TOPSIS(80)
Job satisfaction(79)
Sustainability(79)
Factor analysis(78)
Social media(78)
Knowledge Management(77)
Genetic Algorithm(76)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(59)
Endri Endri(45)
Muhammad Alshurideh(42)
Hotlan Siagian(39)
Jumadil Saputra(36)
Muhammad Turki Alshurideh(35)
Dmaithan Almajali(35)
Barween Al Kurdi(32)
Ahmad Makui(32)
Basrowi Basrowi(31)
Hassan Ghodrati(31)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Sulieman Ibraheem Shelash Al-Hawary(28)
Prasadja Ricardianto(28)
Sautma Ronni Basana(27)
Haitham M. Alzoubi(27)


» Show all authors

Countries

Iran(2168)
Indonesia(1276)
Jordan(783)
India(780)
Vietnam(500)
Saudi Arabia(438)
Malaysia(438)
United Arab Emirates(220)
China(181)
Thailand(151)
United States(109)
Turkey(102)
Ukraine(99)
Egypt(95)
Canada(91)
Pakistan(84)
Peru(83)
United Kingdom(78)
Nigeria(77)
Morocco(73)


» Show all countries
Sort articles by: Volume | Date | Most Rates | Most Views | Reviews | Alphabet
1.

Effect of laser shock peening on the microstructure and mechanical property of AlSi10Mg alloy parts formed by SLM Pages 331-344 Right click to download the paper Download PDF

Authors: Meng-Ru You, Xin-Lin Wang, Hao Wang, Hai-Han Li, Yang Gao

DOI: 10.5267/j.esm.2025.8.004

Keywords: Laser shock peening, AlSi10Mg alloy, Selective laser melting Microstructure, Mechanical property

Abstract:
Selective laser melting (SLM) is considered to be a highly significant additive manufacturing (AM) technology, with the capacity to produce complex shapes that would be difficult to achieve using other methods. However, the broad application of this method is limited by problems like harmful microstructures and porosity, especially during the processing of aluminum alloys. Laser shock peening (LSP) provides a promising approach to reduce the adverse effects linked to aluminium SLM. This research examines how a critical LSP parameter, specifically the number of impacts, influences AlSi10Mg parts produced by SLM. The results were assessed with porosity, microstructure, and microhardness. Results show a 72% reduction in porosity. Furthermore, microstructural analysis revealed discernible grain refinement, accompanied by enhanced hardness. Tensile testing further confirmed the effectiveness of LSP, showing increases in both ultimate tensile strength and yield strength. These results suggest that LSP can effectively address the limitations of the SLM process for demanding applications when used as a post-processing technique.
Details
  • 17
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: ESM | Year: 2025 | Volume: 13 | Issue: 4 | Views: 188 | Reviews: 0

 
2.

Topological optimization design of aircraft landing gear door hinge frame Pages 381-390 Right click to download the paper Download PDF

Authors: Yang Gao, Xin-Lin Wang, Hai-Han Li, Meng-Ru You

DOI: 10.5267/j.esm.2025.7.002

Keywords: PEEK, Fused deposition modeling, Multibody dynamics, Topology optimization, Landing gear, Hing frame

Abstract:
To achieve lightweighting of the aircraft landing gear door hinge under opening and closing loads, a topological optimization model based on the variable density method was established, with structural stiffness as the constraint and minimum mass as the objective. The hinge was redesigned according to the optimized configuration, and the stiffness and strength of the design area were validated. The original aluminum alloy hinge material was replaced with lower-density polyetheretherketone (PEEK), which can be fabricated into complex structures via fused deposition modeling (FDM), thereby enhancing design freedom for topology optimization. However, FDM-printed PEEK's mechanical properties are influenced by printing parameters. This study conducted tensile tests on PEEK specimens printed with different FDM parameters (e.g., layer height, platform temperature, and infill pattern). The optimal printing parameters were determined as 0.1 mm layer height, 120 °C platform temperature, and tetrahedral infill. Subsequently, the best-performing specimens underwent heat treatment, and the effects of different annealing parameters on tensile strength were investigated. The results showed that annealing at 330 °C for 2 hours yielded the highest strength improvement. Furthermore, the hinge's loading conditions during door operation were simulated via multi-body dynamics analysis, while static simulations under peak loads identified stress concentration areas. Topology optimization was then performed to minimize material usage while maintaining mechanical performance, achieving the lightweight goal.
Details
  • 0
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: ESM | Year: 2025 | Volume: 13 | Issue: 4 | Views: 159 | Reviews: 0

 

® 2010-2025 GrowingScience.Com