Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Authors » Abeer Al-Mohtaseb

Journals

  • IJIEC (726)
  • MSL (2637)
  • DSL (649)
  • CCL (495)
  • USCM (1092)
  • ESM (404)
  • AC (557)
  • JPM (247)
  • IJDS (912)
  • JFS (91)
  • HE (21)

Keywords

Jordan(161)
Supply chain management(160)
Vietnam(148)
Customer satisfaction(120)
Performance(113)
Supply chain(108)
Service quality(98)
Tehran Stock Exchange(94)
Competitive advantage(93)
SMEs(86)
optimization(84)
Financial performance(83)
Trust(81)
Job satisfaction(79)
Social media(78)
Factor analysis(78)
TOPSIS(78)
Knowledge Management(77)
Genetic Algorithm(76)
Sustainability(76)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(59)
Endri Endri(45)
Muhammad Alshurideh(42)
Hotlan Siagian(39)
Jumadil Saputra(36)
Muhammad Turki Alshurideh(35)
Dmaithan Almajali(35)
Barween Al Kurdi(32)
Basrowi Basrowi(31)
Hassan Ghodrati(31)
Ahmad Makui(31)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Sulieman Ibraheem Shelash Al-Hawary(28)
Prasadja Ricardianto(28)
Sautma Ronni Basana(27)
Haitham M. Alzoubi(27)


» Show all authors

Countries

Iran(2162)
Indonesia(1276)
Jordan(783)
India(779)
Vietnam(500)
Saudi Arabia(438)
Malaysia(438)
United Arab Emirates(220)
China(181)
Thailand(151)
United States(109)
Turkey(102)
Ukraine(99)
Egypt(95)
Canada(89)
Pakistan(84)
Peru(83)
United Kingdom(77)
Nigeria(77)
Morocco(73)


» Show all countries
Sort articles by: Volume | Date | Most Rates | Most Views | Reviews | Alphabet
1.

Securing cryptocurrency transactions: Innovations in malware detection using machine learning Pages 2055-2066 Right click to download the paper Download PDF

Authors: Ghassan Samara, Abeer Al-Mohtaseb, Hayel Khafajeh, Raed Alazaidah, Omar Alidmat, Ahmad Nasayreh, Mazen Alzyoud, Najah Al-shanableh

DOI: 10.5267/j.ijdns.2024.7.003

Keywords: Cryptocurrency, Malware, Machine Learning-Based Malware Detection

Abstract:
Cryptocurrencies are crucial in modern commerce and finance, whether at the national, corporate, or individual level. They serve as fundamental currencies for buying and selling, enabling various business transactions. However, the rise of cybercrime has brought about concerns regarding their operations, potential breaches in encrypted currencies, and the security systems managing them. The frequency of attack tactics and the motivation of attackers seeking financial gain are well-known. Many cryptocurrencies lack the necessary algorithms, techniques, and knowledge to effectively detect and mitigate malware, making them vulnerable targets for hackers. In this study, machine learning techniques are employed to detect malicious code in digital currencies. Additionally, a comparison of these techniques is conducted to determine the most suitable algorithm and technology, Furthermore, this study highlights the importance of effective malware detection in securing cryptocurrencies. Three datasets of different sizes were used, each yielding distinct results based on dataset size. The AdaBoost model demonstrated superior performance when applied to the short dataset, while the decision tree model performed best with the medium-sized dataset. Conversely, the Naive Bayes model consistently produced the worst results, while the large-size KNN model achieved the highest performance.
Details
  • 34
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: IJDS | Year: 2024 | Volume: 8 | Issue: 4 | Views: 654 | Reviews: 0

 

® 2010-2025 GrowingScience.Com